On-line services of the University of Warsaw
You are not logged in | log in
Study programmes > All studies > Applications of Physics in Biology and Medicine > Applications of Physics in Biology and Medicine, first cycle programme

Applications of Physics in Biology and Medicine, first cycle programme (S1-FBM)

(in Polish: Zastosowania fizyki w biologii i medycynie, stacjonarne, pierwszego stopnia)
first cycle programme
full-time, 3-year studies
Language: Polish

Program studiów

  • dyscyplina wiodąca: nauki fizyczne, pozostałe dyscypliny: nauki chemiczne, nauki biologiczne, nauki medyczne, nauki o zdrowiu
  • studia interdyscyplinarne
  • cztery specjalności do wyboru: biofizyka molekularna, fizyka medyczna, neuroinformatyka, projektowanie molekularne i bioinformatyka
  • wybór specjalności po pierwszym semestrze studiów
  • kształcenie w ramach specjalności od drugiego semestru studiów
  • kształcenie w zakresie fizyki oparte o światowej klasy badania naukowe prowadzone na Wydziale Fizyki UW
  • szeroki zakres zajęć laboratoryjnych
  • dostęp do pracowni komputerowych i bogato wyposażonych bibliotek specjalistycznych
  • możliwość wykonywania własnych projektów i prototypów w pracowni Makerspace@UW
  • praktyki zawodowe w ramach studiów
  • zajęcia na Wydziale Fizyki UW (ul. Pasteura 5)

Interdyscyplinarny kierunek studiów łączący fizykę z naukami biologicznymi i medycyną. Pogranicze tych nauk jest jednym z najdynamiczniej rozwijających się obszarów badań naukowych, a także zastosowań najnowszych technologii.

Charakterystyka specjalności

  • biofizyka molekularna : kształcenie przygotowuje do stosowania i rozwijania metod fizycznych do badania mechanizmów procesów zachodzących w organizmach żywych na poziomie molekuł, makromolekuł i ich układów;specjalność rozwija umiejętności niezwykle przydatne np. przy opracowywaniu metod detekcji różnych molekuł w organizmach żywych, przy odkrywaniu molekularnych podstaw chorób, projektowaniu nowych leków, terapii i metod diagnostycznych.
    http://biofizyka.fuw.edu.pl/
  • fizyka medyczna : kształcenie przygotowuje do pracy z urządzeniami obrazowej diagnostyki medycznej stosowanej między innymi w onkologii; do dyspozycji studentów stworzono od podstaw nowoczesne Laboratorium Ochrony Radiologicznej i Dozymetrii; program studiów fizyki medycznej spełnia wymogi ustawowe umożliwiające zdawanie egzaminu nadającego uprawnienia Inspektora Ochrony Radiologicznej (IOR).
    http://zfbweb.zfb.fuw.edu.pl
  • neuroinformatyka : kształcenie przygotowuje do zastosowania metod fizyki w badaniach mózgu - pogranicze informatyki, biologii, neurokognitywistyki, sztucznej inteligencji, psychologii, medycyny, fizyki i matematyki; na pracowniach, wyposażonych w najnowocześniejszy sprzęt do pomiaru „elektrycznych śladów myśli", czyli elektroencefalogramu (EEG), studenci zapoznają się m.in. z podstawami technik neurofeedback oraz interfejsami mózg-komputer .
    http://neuroinformatyka.pl
  • projektowanie molekularne i bioinformatyka : kształcenie koncentruje się na nowoczesnych metodach bioinformatyki i modelowania komputerowego złożonych układów i procesów biomolekularnych stosowanych np. przy projektowaniu leków czy w badaniach w obszarze medycyny nuklearnej.
    http://bioinformatyka.fuw.edu.pl

Sylwetka absolwenta

Absolwenci specjalności biofizyka molekularna uzyskują umiejętności stosowania metod fizycznych, chemicznych i biologicznych w laboratoriach badawczych, rozwiązywania podstawowych problemów dotyczących funkcjonowania biomolekuł, projektowania nowych molekuł i makromolekuł o pożądanych właściwościach pod kątem zastosowań biotechnologicznych i medycznych. Potrafią także praktycznie wykorzystać swoje umiejętności w laboratoriach o profilu medycznym, analitycznym i diagnostycznym.

Absolwent specjalności fizyka medyczna posiada umiejętność łączenia podstawowych metod i idei z różnych obszarów fizyki, chemii i biologii oraz wybranych dziedzin medycyny. Ponadto absolwenci będą przygotowani do zdawania egzaminu na uprawnienia Inspektora Ochrony Radiologicznej. Studia licencjackie przygotują specjalistów ochrony radiologicznej i dozymetrii dla Zakładów Medycyny Nuklearnej i Zakładów Radioterapii, a także dla przemysłu stosującego techniki radiacyjne.

Absolwent specjalności neuroinformatyka zna podstawowe techniki doświadczalne, obserwacyjne i numeryczne w eksperymentach fizycznych, chemicznych i biologicznych oraz potrafi opisać i wytłumaczyć ich wyniki z wykorzystaniem języka matematyki; zna podstawy programowania, korzystania z komputerowych baz danych oraz uczenia maszynowego. Znajomość technik pomiarowych, programowania i technik statystycznych analizy danych zapewni im szeroki dostęp do rynku pracy. Absolwenci będą cennymi pracownikami potrafiącymi mierzyć i analizować sygnały stosowane w praktyce klinicznej, wykonywać opracowania statystyczne danych medycznych.

Absolwenci specjalności projektowanie molekularne i bioinformatyka uzyskają podstawowe wykształcenie w zakresie stosowania różnorodnych metod projektowania molekularnego i bioinformatyki. Studia przygotują do prowadzenia wspomaganych komputerowo prac o charakterze interdyscyplinarnym, jak również dobrego rozumienia prac eksperymentalnych i umiejętności komunikowania się z eksperymentatorami i specjalistami z innych dziedzin przyrodniczych i medycznych.

Qualification awarded:

First cycle degree - licencjat - in applications of physics in biology and Medicine

Access to further studies:

second cycle programme

Learning outcomes

We have more than one version of this field. Click below and select the version you want to see:

Upon the completion of the study program, the graduate achieves the learning outcomes specified in Resolution No. 414 of the Senate of the University of Warsaw of May 8, 2019 on study programs at the University of Warsaw (Monitor UW of 2019, item 128 as amended d.). The graduate has the following qualifications in terms of knowledge, skills and social competences:
Regarding knowledge, the graduate
• knows and understands the basic physical phenomena and processes applicable in biology and medicine
• knows and understands the basic chemical phenomena and processes applicable in biology and medicine
• knows and understands the basic biological phenomena and processes in the context of the application of physics in biology and medicine
• knows and understands higher mathematics and information techniques necessary to solve physical problems of an average level of complexity
• knows and understands the structure and functions of living organisms to the extent necessary for the appropriate application of physical knowledge in selected areas of biological sciences, medical sciences and health sciences.
• knows and understands the physicochemical foundations of selected aspects of health sciences along with the appropriate terminology.
• knows and understands the physicochemical foundations of selected aspects of medical science along with the appropriate terminology.
• knows and understands the basic experimental, observational and numerical techniques used to study physical phenomena and processes, in particular in relation to the functioning, design and research of biomolecules
• knows and understands the basic experimental, observational and numerical techniques used to study chemical phenomena and processes, in particular in relation to the functioning, design and research of biomolecules
• knows and understands the basic experimental, observational and numerical techniques used to study biological phenomena and processes
• knows and understands the principles of operation of measurement systems and research equipment appropriate for the physical sciences used in various areas of physics, chemistry and biology
• knows and understands the basics of data analysis in the context of studying biomolecules with physical methods
• knows and understands the interrelationship of phenomena and processes in the field of exact and natural sciences, medical sciences and health sciences, as well as the possibility of using the results of research in these fields in various areas of socio-economic life
• knows and understands the basic principles of occupational health and safety to the extent that allows them to work in the area of molecular biophysics
• knows and understands the basic legal and ethical conditions related to research and teaching
• knows and understands the basic concepts and principles of industrial property protection and copyright, and is able to use patent information resources
• knows and understands the general principles of creating and developing forms of individual entrepreneurship using knowledge of exact and natural sciences, medical sciences and health sciences

Regarding skills, the graduate:
• is able to apply the known theorems, methods and basic research tools in solving problems, analyzing and planning simple experiments and scientific observations
• is able to analyze typical problems in physical sciences in terms of quantitative and qualitative generalization of the results of these analyzes
• is able to analyze common problems in chemical sciences in terms of quantitative and qualitative generalization of the results of these analyzes
• is able to perform simple physical experiments, observations, numerical calculations and computer simulations using standard software packages, and is able to critically analyze the results of measurements, observations and calculations along with the assessment of the accuracy of the results
• is able to creatively apply the known methods of information technology and statistical data analysis related to the study of biomolecules, also in other contexts
• is able to find the necessary information in professional literature, both from databases and other sources; is able to reconstruct the course of reasoning or the course of an experiment described in the literature, is able to broaden the knowledge of the discipline he / she is practicing on this basis
• is able to plan and supervise simple physical experiments, observations, numerical calculations and computer simulations, acting individually or in a team
• is able to combine basic methods and ideas from various exact and natural sciences and from selected departments of medical sciences and health sciences, noting that apparently distant phenomena can be described using a similar model, and discuss them with specialists in various fields
• is able to use the knowledge and methodology in the field of physical sciences for related scientific disciplines: chemical sciences, biological sciences and selected issues from medical sciences and health sciences
• is able to present the results of research (experimental, theoretical or computational) in the form of a written report, in the form of an oral presentation using the techniques of computer multimedia presentation, conference poster and scientific publication under the supervision of a research tutor
• is able to communicate with both specialists and non-specialists in the field of issues relevant to the field of exact and natural sciences and in the field of research areas lying on the border of physical sciences and related scientific disciplines
• is able to define directions for further improvement of knowledge and skills (including self-education)
• is able to the English language to a degree that allows for completing education in the field of science relevant to the field of study, in accordance with the requirements set out for level B2 of the Common European Framework of Reference for Languages
• is able to use information and communication technologies, in particular to access knowledge resources on the Internet

Regarding social skills, the graduate:
• is ready for lifelong learning in conditions of rapidly accumulating scientific knowledge, in particular related to the study of biomolecules, and changing living conditions
• is ready to cooperate and work in groups, including interdisciplinary teams associating employees of various fields and research disciplines
• is ready to properly define priorities for the implementation of specific tasks and projects of various nature
• is willing to foster intellectual honesty in the actions of himself and others; to solve ethical problems in the context of research integrity and the application of the scientific method in knowledge gathering
• is ready to systematically read basic scientific and popular science journals in a selected field of exact and natural sciences, in particular related to the study of biomolecules, in order to broaden and deepen knowledge and to counteract threats when obtaining information from unverified sources
• is ready to put the acquired knowledge and skills, in particular related to the study of biomolecules, into practice and to take the responsibility towards society as a result
• is willing to think and act in an entrepreneurial manner

Course structure diagram:

Abbreviations used in tables:
lect - Lecture
cl - Classes
cww - Inter-active lecture
kon - Seminar
kint - E-learning course
lab - Lab
prac_lic - First cycle dipoma seminar
praktyka - Placement
psem - Proseminar
c - Pass/fail
e - Examination
g - Grading
2nd semester of 1st year, Medical PhysicsECTSlectclcwwkonkintlabprac_licpraktykapsemexam
Mathematics II149090e
Analysis of Measurements and Preliminary Laboratoryg
Physics II (for PhBM-PhM & NI)e
Statistical inference43030e
Total:18120120
2nd semester of 1st year, NeuroinformaticsECTSlectclcwwkonkintlabprac_licpraktykapsemexam
Mathematics II149090e
Analysis of Measurements and Preliminary Laboratoryg
Physics II (for PhBM-PhM & NI)e
Statistical inference43030e
Total:18120120
2nd s. of 1st year, Molecular Modelling and BioinformaticsECTSlectclcwwkonkintlabprac_licpraktykapsemexam
Mathematics II149090e
Analysis of Measurements and Preliminary Laboratoryg
Physics II (for PhBM-PhM & NI)e
Statistical inference43030e
Total:18120120

Admission procedures:

Visit the following page for details on admission procedures: https://irk.uw.edu.pl/