Serwisy internetowe Uniwersytetu Warszawskiego
Nie jesteś zalogowany | zaloguj się
Kierunki studiów > Wszystkie studia > Zastosowania fizyki w biologii i medycynie > Zastosowania fizyki w biologii i medycynie, stacjonarne, drugiego stopnia

Zastosowania fizyki w biologii i medycynie, stacjonarne, drugiego stopnia (S2-FBM)

Drugiego stopnia
Stacjonarne, 2-letnie
Język: polski

Program studiów

  • dyscyplina wiodąca: nauki fizyczne, pozostałe dyscypliny: nauki chemiczne, nauki biologiczne, nauki medyczne, nauki o zdrowiu
  • studia interdyscyplinarne
  • cztery specjalności do wyboru: biofizyka molekularna, fizyka medyczna, neuroinformatyka, projektowanie molekularne i bioinformatyka
  • wybór specjalności na początku studiów
  • kształcenie w ramach specjalności od początku studiów
  • kształcenie w zakresie fizyki oparte na światowej klasy badaniach naukowych prowadzonych na Wydziale Fizyki UW
  • kształcenie w na podstawie indywidualnego planu studiów przygotowywanego przez studenta zgodnie z jego zainteresowaniami, wspólnie z opiekunem kierunku
  • szeroki zakres zajęć laboratoryjnych
  • dostęp do pracowni komputerowych i bogato wyposażonych bibliotek specjalistycznych
  • możliwość wykonywania własnych projektów i prototypów w pracowni Makerspace@UW
  • możliwość uczestniczenia w pracach naukowych prowadzonych przez grupy badawcze na Wydziale Fizyki.
  • praktyki zawodowe w ramach studiów
  • zajęcia na Wydziale Fizyki UW (ul. Pasteura 5)

Interdyscyplinarny kierunek studiów łączący fizykę z naukami biologicznymi i medycyną. Pogranicze tych nauk jest jednym z najdynamiczniej rozwijających się obszarów badań naukowych, a także zastosowań najnowszych technologii.

Charakterystyka specjalności

Biofizyka molekularna: celem biofizyki molekularnej jest badanie układów o znaczeniu biologicznym metodami fizycznymi, takimi jak wielowymiarowy jądrowy rezonans magnetyczny, metody mikroskopii i manipulacji pojedynczymi cząsteczkami, spektrometria masowa, ultrawirowanie analityczne oraz teoretyczne metody modelowania molekularnego. Badania w tym zakresie, obejmujące zagadnienia z pogranicza fizyki, chemii, biologii i bioinformatyki, stwarzają unikalną możliwość konstruowania modeli obiektów biologicznych i wyjaśniania mechanizmów procesów zachodzących w układach ożywionych na dowolnym poziomie, od pojedynczych makromolekuł a nawet wiązań molekularnych do całych organizmów i ekosystemów. Informacje, których dostarczają badania metodami biofizyki molekularnej są niezwykle przydatne w medycynie np. przy poznawaniu molekularnych podstaw chorób i projektowaniu skutecznych leków.

Fizyka medyczna: w medycynie w ostatnich latach zostały wprowadzone nowe technologie diagnostyczne i terapeutyczne wywodzące się z osiągnięć fizyki. Tomografia pozytonowa (PET) jest już stosowana w wielu ośrodkach diagnostyki nowotworowej w Polsce a terapia hadronowa, opierająca się na najnowszych wynikach badań naukowych w zakresie fizyki jądrowej, wprowadzana do praktyki klinicznej w Europie (Heidelberg i Pavia) i również stosowana w Polsce (Kraków). Współczesna diagnostyka i terapia medyczna, w szczególności diagnostyka i terapia nowotworów wymaga nie tylko wykwalifikowanego personelu lekarskiego, ale i fizyków medycznych oraz personelu technicznego wspomagającego medyczne technologie radiacyjne.

Neuroinformatyka: gwałtowny rozwój neuroinformatyki na świecie odbywa się zarówno w zakresie badań podstawowych, jak i konkretnych zastosowań. Studia neuroinformatyki dostarczą gospodarce specjalistów w dziedzinie już od kilku lat dynamicznie rozwijającej się za granicą, która owocuje coraz większą ilością ważnych zastosowań medycznych w zakresie zaawansowanych technologii. Celem studiów drugiego stopnia w zakresie Neuroinformatyki jest zapewnienie studentom rozszerzonego w stosunku do studiów I stopnia wykształcenia w dziedzinie informatyki i statystyki, potrzebnego w klinikach i laboratoriach.

Projektowanie molekularne i bioinformatyka: wieloskalowe metody molekularnego projektowania i bioinformatyki są powszechnie stosowane w nano-i biomedycynie, jak również w różnego rodzaju nano- i biotechnologiach. Prace projektowe związane z inżynierią molekularną białek i kwasów nukleinowych, projektowanie leków, prace interdyscyplinarne związane z badaniami struktury i dynamiki układów (bio)molekularnych czy analiza onkogennych szlaków sygnałowych, należą do burzliwie rozwijających się dziedzin wiedzy i technologii. W projektowaniu molekularnym stosowane są też coraz szerzej metody wirtualnej rzeczywistości (virtual reality). Powstały takie nowe dziedziny jak genomika i proteomika, których celem jest pełna i wysoce przepustowa (high throughput) charakterystyka sekwencjonowanych genomów oraz kompletna charakterystyka białek kodowanych przez sekwencjonowane genomy. Kształcenie specjalistów potrafiących rozwijać i wykorzystywać metody projektowania molekularnego i bioinformatyki należy więc do silnie rozwijającego się nurtu edukacyjnego na świecie. Celem studiów drugiego stopnia w zakresie Projektowania molekularnego i bioinformatyki jest przygotowanie studentów do operowania rozszerzoną (w stosunku do studiów I stopnia) wiedzą z zakresu biologii, fizyki, chemii, a przede wszystkim informatyki stosowanej.

Sylwetka absolwenta

Absolwenci specjalności biofizyka molekularna będą przygotowani do operowania rozszerzoną wiedzą z zakresu biologii, fizyki i chemii.

Uzyskują umiejętności:

  • obsługi nowoczesnej aparatury badawczej i stosowania związanych z nią metod fizycznych, chemicznych i biologicznych w laboratoriach badawczych,
  • rozwiązywania złożonych problemów dotyczących funkcjonowania biomolekuł,
  • projektowania biomolekuł pod kątem zastosowań biotechnologicznych i medycznych.

Będą także praktycznie wykorzystywać swoje umiejętności w laboratoriach o profilu medycznym, analitycznych i diagnostycznych.

Absolwenci fizyki medycznej będą mieli umiejętności łączenia podstawowych metod i idei z różnych obszarów fizyki, chemii i biologii oraz wybranych dziedzin medycyny. Ponadto studia magisterskie przygotują wysoko wykwalifikowanych specjalistów ochrony radiologicznej i dozymetrii dla Zakładów Medycyny Nuklearnej i Zakładów Radioterapii, a także dla przemysłu stosującego techniki radiacyjne.

Atutem absolwentów fizyki medycznej będzie umiejętność wykorzystania interdyscyplinarnego podejścia do problemu. Znajomość zaawansowanych technik doświadczalnych, obserwacyjnych i numerycznych pozwoli absolwentowi zaplanować i wykonać złożony eksperyment, dokonać krytycznej analizy wyników pomiarów, obserwacji lub obliczeń teoretycznych i modelowania komputerowego wraz z oceną dokładności wyników oraz zinterpretować dane doświadczalne na gruncie teorii i modeli teoretycznych. Dzięki temu absolwent może być cennym pracownikiem nie tylko zespołu naukowego, ale również w wielu innych dziedzinach. Dzięki umiejętności syntezy metod i idei z różnych obszarów będzie potrafił wyszukać w literaturze i zaadaptować wiedzę i metodykę fizyki, a także stosowane metody doświadczalne i teoretyczne do rozwiązywanego problemu, oraz klarownie przedstawić wyniki badań w grupach interdyscyplinarnych.

Absolwenci neuroinformatyki będą wykształceni w dziedzinie pomiaru i analizy sygnałów takich jak EEG, EMG, EKG szeroko stosowanych w diagnostyce klinicznej. Zapoznają się również z technikami takimi jak: neurofeedback czy interfejsy mózg-komputer (BCI), stanowiące jedyną szansę dla pacjentów w ciężkich stadiach chorób neurodegeneracyjnych. Absolwent neuroinformatyki pozna zaawansowane techniki doświadczalne, obserwacyjne i numeryczne w eksperymentach fizycznych, chemicznych i biologicznych oraz będzie potrafił opisać i wytłumaczyć ich wyniki z wykorzystaniem języka matematyki, pozna techniki programowania oraz korzystania z komputerowych baz danych. Znajomość technik pomiarowych, programowania i technik statystycznej analizy danych zapewni im szeroki dostęp do rynku pracy. Absolwenci będą cennymi pracownikami, potrafiącymi mierzyć i analizować sygnały stosowane w praktyce klinicznej, wykonywać opracowania statystyczne danych medycznych, zestawiać systemy do zyskującego na popularności neurofeedbacku.

Absolwenci specjalności projektowanie molekularne i bioinformatyka uzyskają wykształcenie w zakresie stosowania różnorodnych metod projektowania molekularnego i bioinformatyki w biofizyce, chemii, biologii i naukach medycznych. Studia przygotują do prowadzenia wspomaganych komputerowo prac o charakterze interdyscyplinarnym, jak również dobrego rozumienia prac eksperymentalnych i umiejętności komunikowania się z eksperymentatorami i specjalistami z innych dziedzin przyrodniczych i medycznych.

Koordynatorzy ECTS:

Przyznawane kwalifikacje:

Magisterium z zastosowań fizyki w biologii i medycynie
Magisterium z zastosowań fizyki w biologii i medycynie, specjalność: biofizyka molekularna
Magisterium z zastosowań fizyki w biologii i medycynie, specjalność: fizyka medyczna
Magisterium z zastosowań fizyki w biologii i medycynie, specjalność: biofizyka i biochemia widzenia
Magisterium z zastosowań fizyki w biologii i medycynie, specjalność: neuroinformatyka
Magisterium z zastosowań fizyki w biologii i medycynie, specjalność: projektowanie molekularne i bioinformatyka

Dalsze studia:

szkoła doktorska, studia podyplomowe

Efekty kształcenia

Uwaga, istnieje więcej niż jedna wersja tego pola. Kliknij poniżej i wybierz wersję, którą chcesz wyświetlić:

Uniwersytet Warszawski
Dyplom ukończenia studiów II stopnia

Kierunek: Zastosowania Fizyki w Biologii i Medycynie
Specjalność: Biofizyka i Bichemia Widzenia

Czas trwania studiów: 4 semestry
Liczba uzyskanych punktów ECTS: 120
w tym za zajęcia:
w zakresie nauk podstawowych 56
praktyczne (laboratoria i warsztaty) 20
zajęcia modułowe do wyboru 50
Praktyki zawodowe : 3

Najważniejsze efekty kształcenia osiągnięte przez studenta podczas studiów w ramach specjalności:

WIEDZA
• posiada rozszerzoną wiedzę ogólną w wybranych obszarach nauk fizycznych, chemicznych i biologicznych a także w zakresie ich historycznego rozwoju, wzajemnego powiązania i znaczenie dla postępu nauk ścisłych i przyrodniczych, poznania świata i rozwoju ludzkości; potrafi samodzielnie odtworzyć podstawowe twierdzenia i prawa oraz ich dowody; rozumie złożone zjawiska i procesy fizyczne, chemiczne i biologiczne w zakresie specjalności przewidzianej programem studiów; rozumie istotę i znaczenie interdyscyplinarnego podejścia w naukach ścisłych i przyrodniczych oraz możliwości jego szerokiego wykorzystania;
• posiada wiedzę w zakresie fizykochemicznych i biologicznych podstaw nauk o zdrowiu, w obszarze dziedzin i dyscyplin naukowych właściwych dla studiowanego kierunku; rozumie zasady funkcjonowania sprzętu i aparatury stosowanych w dyscyplinach naukowych o profilu medycznym, właściwych dla studiowanego kierunku;
• zna zaawansowane techniki doświadczalne, obserwacyjne i numeryczne pozwalające zaplanować i wykonać złożony eksperyment fizyczny, chemiczny i biologiczny;
• posiada wiedzę o aktualnych kierunkach rozwoju nauk ścisłych, przyrodniczych i medycznych, w obrębie obranej specjalności, a w szczególności zna terminologię z zakresu tych dyscyplin;
• zna i rozumie podstawowe pojęcia i zasady z zakresu ochrony własności przemysłowej i prawa autorskiego oraz konieczność zarządzania zasobami własności intelektualnej; potrafi korzystać z zasobów informacji patentowych

UMIEJĘTNOŚCI
• potrafi dokonać krytycznej analizy wyników pomiarów, obserwacji lub obliczeń teoretycznych i modelowania komputerowego wraz z oceną dokładności wyników oraz posiada umiejętność interpretacji danych doświadczalnych na gruncie teorii i modeli teoretycznych;
• potrafi przedstawić wyniki badań (eksperymentalnych, teoretycznych lub obliczeniowych) w formie pisemnego raportu (w języku polskim i angielskim), w formie ustnej (w języku polskim i angielskim), w formie prezentacji multimedialnej, plakatu konferencyjnego; posiada umiejętności niezbędne do opracowania materiału badawczego w formie pracy magisterskiej oraz podstawowe umiejętności przygotowania publikacji naukowej (w języku polskim i angielskim) pod kierunkiem opiekuna naukowego.
• potrafi skutecznie komunikować się zarówno ze specjalistami jak i niespecjalistami w zakresie problematyki właściwej dla studiowanego obszaru nauk ścisłych i przyrodniczych oraz w zakresie obszarów leżących na pograniczu pokrewnych dyscyplin naukowych

KOMPETENCJE SPOŁECZNE
• potrafi współdziałać i pracować w grupach, w tym interdyscyplinarnych zespołach zrzeszających pracowników różnych dziedzin i dyscyplin badawczych; jest świadoma własnych ograniczeń i wie, kiedy zwrócić się do ekspertów;
• ma świadomość odpowiedzialności za podejmowane inicjatywy badań, eksperymentów lub obserwacji; rozumie społeczne aspekty praktycznego stosowania zdobytej wiedzy i umiejętności oraz związaną z tym odpowiedzialności.

PRAKTYKI ZAWODOWE
Praktyka zawodowa odbywana jest w zakładzie/salonie optycznym lub w gabinecie optometrycznym. Opiekunem studenta powinien być optometrysta, optyk po kursach refrakcji III stopnia lub okulista posiadsjący kwalifikacje w zakresie doboru korekcji sferocylindrycznej oraz korygowania wad widzenia obuocznego. Student pod nadzorem opiekuna podejmuje decyzje oraz wykonuje czynności, które w przyszłości, jako dyplomowany optometrysta, będzie musiał wykonywać samodzielnie.

Efekty kształcenia osiągnięte przez studenta w trakcie odbywania praktyk zawodowych:
• potrafi samodzielnie zaplanować i przeprowadzić badanie optometryczne oraz podjąć decyzję dotyczącą doboru szkieł korekcyjnych, soczewek kontaktowych i innych pomocy wzrokowych u pacjentów ze wszystkich grup wiekowych;
• potrafi samodzielnie zaplanować i nadzorować ćwiczenia narządu wzroku wykonywane przez pacjenta w celu wykształcenia lub przywrócenia określonych funkcji wzrokowych;
• postępuje zgodnie z etyką obowiązującą osoby wykonujące zawód paramedyczny.

Plan studiów:

Oznaczenia wykorzystane w siatkach:
wyk - Wykład
ćw - Ćwiczenia
lab - Laboratorium
prac_mgr - Pracownia magisterska
praktyka - Praktyka
psem - Proseminarium
sem - Seminarium
e - Egzamin
z - Zaliczenie
zo - Zaliczenie na ocenę

Kwalifikacja:

Ze szczegółowymi kryteriami kwalifikacji można zapoznać się na stronie: https://irk.oferta.uw.edu.pl/