On-line services of the University of Warsaw
You are not logged in | log in
Study programmes > All studies > Physics > Physics, second cycle programme

Physics, second cycle programme (S2-FZ)

(in Polish: Fizyka, stacjonarne, drugiego stopnia)
second cycle programme
full-time, 2-year studies
Language: Polish

Celem studiów jest pogłębienie wiedzy z zakresu współczesnej fizyki oraz specjalizacja w wybranej dziedzinie, związana z poszerzaniem znajomości jej aparatu pojęciowego oraz stosowanych metod teoretycznych i doświadczalnych.

Program studiów

  • dyscyplina wiodąca: nauki fizyczne
  • specjalności do wyboru: fizyka jądrowa i cząstek elementarnych, fizyka materii skondensowanej i nanostruktur półprzewodnikowych, metody jądrowe fizyki ciała stałego, fotonika, metody fizyki w ekonomii (ekonofizyka), nauczanie i popularyzacja fizyki,
  • wybór specjalności pod koniec pierwszego semestru studiów
  • kształcenie w ramach specjalności od drugiego semestru studiów
  • kształcenie w zakresie fizyki oparte na światowej klasy badaniach naukowych prowadzonych na Wydziale Fizyki UW
  • kształcenie w na podstawie indywidualnego planu studiów przygotowywanego przez studenta zgodnie z jego zainteresowaniami, wspólnie z opiekunem kierunku
  • szeroki zakres zajęć laboratoryjnych
  • dostęp do pracowni komputerowych i bogato wyposażonych bibliotek specjalistycznych
  • możliwość wykonywania własnych projektów i prototypów w pracowni Makerspace@UW
  • możliwość uczestniczenia w pracach naukowych prowadzonych przez grupy badawcze na Wydziale Fizyki
  • praktyki zawodowe w ramach studiów
  • uzyskanie uprawnień nauczycielskich w ramach specjalności nauczanie i popularyzacja fizyki lub w ramach zajęć ponadplanowych
  • zajęcia na Wydziale Fizyki UW (ul. Pasteura 5)

Charakterystyka specjalności:

Fizyka jądrowa i cząstek elementarnych: celem specjalności fizyka jądrowa i cząstek elementarnych jest kształcenie fizyków w jednej z następujących specjalizacji: fizyka jądrowa i fizyka cząstek elementarnych. Celem kształcenia jest przekazanie wiedzy o oddziaływaniach fundamentalnych i własnościach jąder atomowych. Oprócz przekazanej wiedzy teoretycznej w ramach szeregu pracowni absolwent zdobędzie umiejętności prowadzenia badań naukowych – od planowania i przeprowadzenia eksperymentów, opracowania uzyskanych danych do przedstawienia wyników i wniosków w naukowej publikacji. Ponadto absolwent będzie miał wiedzę dotyczącą możliwości zastosowań metod fizyki jądrowej w różnych dziedzinach życia.

Sylwetka absolwenta

Absolwent będzie posiadał głęboką wiedzę w swojej specjalizacji oraz szeroką znajomość specjalizacji wchodzącej w tworzoną specjalność. Absolwent specjalności fizyka jądrowa i cząstek elementarnych posiada poszerzoną wiedzę ogólną z zakresu nauk fizycznych oraz wiedzę specjalistyczną w wybranej specjalności. Absolwent potrafi definiować i rozwiązywać problemy fizyczne – zarówno rutynowych jak i niestandardowych. Potrafi korzystać z literatury oraz prowadzić dyskusje fachowe zarówno ze specjalistami jak i niespecjalistami. Absolwent ma podstawową wiedzę o problemach energetyki jądrowej, zastosowaniach izotopów promieniotwórczych w biologii, medycynie, rolnictwie itp., zastosowaniach promieniowania w materiałoznawstwie, a także zdobywa wiedzę z obszaru ochrony środowiska w zakresie zagrożeń powodowanych przez naturalne i sztuczne źródła promieniowania. Wiedza i umiejętności absolwenta umożliwiają mu podjęcie pracy w: jednostkach badawczych, laboratoriach przemysłowych i laboratoriach diagnostycznych.

Fizyka materii skondensowanej i nanostruktur półprzewodnikowych: celem specjalności jest kształcenie wysokiej klasy specjalistów potrafiących badać doświadczalnie i interpretować zjawiska fizyczne zachodzące w półprzewodnikach, strukturach półprzewodnikowych i innych układach wykorzystujących elementy wytwarzane na bazie materii skondensowanej, a w szczególności rozumiejących fizyczne podstawy funkcjonowania urządzeń wytwarzanych w oparciu o takie materiały. Zdobyta wiedza pozwoli absolwentom na prowadzenie prac eksperymentalnych i charakteryzacyjnych, opracowywanie danych doświadczalnych i ich interpretację opartą na zdobytej wiedzy o kwantowej strukturze materii, a także na prowadzenie prac w zakresie szeroko rozumianej nowoczesnej technologii półprzewodników i nanostruktur półprzewodnikowych oraz ich zastosowań.

Sylwetka absolwenta

Absolwenci specjalności zdobędą umiejętności wymagane do prowadzenia pracy naukowo-badawczej w ośrodkach akademickich, instytutach naukowych, badawczych ośrodkach przemysłowych, instytutach badawczo-rozwojowych, przemyśle high-tech itp.

Metody jądrowe fizyki ciała stałego: specjalność ta ma na celu kształcenie specjalistów w dziedzinie nowoczesnych metod badawczych służących do określania struktury krystalicznej i magnetycznej materiałów, szczególnie materiałów stosowanych w technice. Przedmiotem badań są również oddziaływania międzyatomowe, bowiem one determinują unikalne cechy nowych materiałów. Specjaliści znający nowe metody badawcze, metody jądrowe, szczególnie te uprawiane przy dużych urządzeniach (reaktorach, źródłach spallacyjnych, synchrotronach) są niezbędni w nowoczesnych zespołach badawczych a także zespołach badających nowe materiały przydatne w przemyśle. Przedmiotem tej specjalności są również badania podstawowe dotyczące mikroskopowego opisu stanu i oddziaływań w materii skondensowanej. Zagadnienia omawiane w ramach tej specjalności dotyczą materiałów istotnych w innych naukach przyrodniczych jak chemia, biologia i geologia.

Sylwetka absolwenta

Absolwenci specjalności zdobędą umiejętności wymagane do prowadzenia pracy naukowo-badawczej w ośrodkach akademickich, instytutach naukowych, badawczych ośrodkach przemysłowych, instytutach badawczo-rozwojowych, przemyśle high-tech itp.

Fotonika: celem tej specjalności jest kształcenie fizyków w dziedzinie optyki kryształów fotonicznych, optyki dyfrakcyjnej i plazmoniki, przy dobrej znajomości optyki informacyjnej. Specjalność ma charakter stosowany i obejmuje wiedzę potrzebną do rozumienia działania, umiejętności wykorzystania, a także do projektowania i modelowania układów fotonicznych. Fotonika, a szczególnie jej część dotycząca układów opartych na kryształach fotonicznych i elementach plazmonicznych będzie w coraz większym stopniu wykorzystywana jako element uzupełniający lub zamienny wobec elektroniki, wykraczając poza - z fizycznego punktu widzenia proste - zastosowania telekomunikacyjne, czujniki i wyświetlacze. Optyka informacyjna dostarcza aparatu matematycznego i metodyki do funkcjonalnego opisu układów fotonicznych, co podkreśla stosowany charakter specjalności.

Sylwetka absolwenta

Absolwent specjalności Fotonika będzie przygotowany do podjęcia pracy w jednostkach naukowo-badawczych ośrodków przemysłowych związanych z optyką, fotoniką, telekomunikacją, lub naukami materiałowymi (szczególnie w odniesieniu do własności elektromagnetycznych nanomateriałów). Absolwent posiada poszerzoną - w stosunku do studiów pierwszego stopnia -wiedzę ogólną z zakresu nauk fizycznych oraz wiedzę specjalistyczną z zakresu specjalności. Absolwent posiada wiedzę praktyczną dotyczącą technik modelowania i projektowania układów fotonicznych, znajomości budowy i działania elementów optoelektronicznych, technik pomiarowych i technik optycznego przetwarzania informacji.

Metody fizyki w ekonomii (ekonofizyka): celem kształcenia w ramach tej specjalności jest stworzenie studentom fizyki możliwości poznania idei, koncepcji, metodologii, metod, modeli i teorii opracowanych w ramach szeroko rozumianej fizyki, które są obecnie wykorzystywane do analizy zjawisk i procesów ekonomiczno-społecznych. Oczywiście, wskazywane są związki z ilościowymi metodami ekonomii, matematyką finansową a nawet wybranymi ilościowymi metodami socjologii. Chodzi o to, aby absolwent w efekcie uzyskał wykształcenie interdyscyplinarne i wielokierunkowe, a także kompetencje i umiejętności dostosowane do potrzeb, zmieniającego się dynamicznie, rynku pracy jak też umożliwiające prowadzenie szeroko zakrojonych (całościowych a nie tylko wycinkowych) badań naukowych. Ponadto, celem specjalności Metody fizyki w ekonomii (ekonofizyka) jest umożliwienie wybitnie zdolnym studentom realizacji programu studiów II stopnia w rozszerzonym i pogłębionym zakresie oraz umożliwienie pracy w grupach badawczych nad zagadnieniami będącymi aktualnymi problemami naukowymi. Pozwoli to na przygotowanie studentów w/w studiów do pracy badawczej m.in. do podjęcia studiów doktoranckich z zamiarem rozpoczęcia kariery naukowej, bądź do podjęcia pracy w instytucjach wymagających znajomości metod rozwiązywania problemów na bardzo wysokim poziomie. Praca magisterska przygotowana w ramach tej specjalności powinna reprezentować poziom pracy naukowej nadającej się do publikacji.

Sylwetka absolwenta

Absolwent specjalności Metody fizyki w ekonomii (ekonofizyka) posiada poszerzoną, w stosunku do studiów pierwszego stopnia, wiedzę ogólną z zakresu nauk fizycznych oraz wiedzę specjalistyczną w wybranej specjalności. Absolwent posiada wiedzę, umiejętności i kompetencje pozwalające na definiowanie oraz rozwiązywanie problemów fizycznych (zarówno rutynowych jak i niestandardowych). Absolwent posiada następujące umiejętności, kwalifikacje i kompetencje:

  • umiejętność dostrzegania zarówno zjawisk i procesów fizycznych jak też ekonomicznych a także socjologicznych;
  • umiejętność pozyskiwania i opracowywania danych empirycznych, zwłaszcza dużych rekordów danych;
  • umiejętność wizualizacji danych empirycznych;
  • umiejętność interpretacji danych oraz analizy danych (zwłaszcza empirycznych) oraz ich analizy matematycznej i numerycznej a także ich algorytmizowanie i modelowanie;
  • umiejętność modelowania numerycznego i komputerowego a w tym zwłaszcza umiejętność projektowania i prowadzenia symulacji komputerowych oraz porównywania uzyskanych wyników z danymi empirycznymi;
  • znajomość metod prognozowania i umiejętność ich praktycznego wykorzystywania;
  • umiejętność pracy w zespołach interdyscyplinarnych (np. składających się z ekonomistów, socjologów, psychologów, matematyków finansowych i ekonofizyków);
  • kwalifikacje do pracy w zespołach interdyscyplinarnych i wielokierunkowych.

Nauczanie i popularyzacja fizyki: celem kształcenia na tej specjalności jest uzyskanie szerokiej wiedzy w zakresie wszystkich gałęzi fizyki, umożliwiającej śledzenie prowadzonych współcześnie badań oraz rozumienie najważniejszych odkryć naukowych. Nabycie umiejętności przekazywania wiedzy z zakresu nauk przyrodniczych z uwzględnieniem możliwości poznawczych młodzieży szkolnej i osób dorosłych.

Sylwetka absolwenta

Absolwent posiada poszerzoną – w stosunku do studiów pierwszego stopnia – wiedzę ogólną z zakresu nauk fizycznych oraz wiedzę specjalistyczną w zakresie dydaktyki fizyki i matematyki. Absolwent posiada wiedzę i umiejętności pozwalające na definiowanie oraz rozwiązywanie problemów fizycznych – zarówno rutynowych jak i niestandardowych. Potrafi korzystać z literatury naukowej oraz prowadzić dyskusje fachowe zarówno ze specjalistami jak i niespecjalistami, a także przystępnie objaśniać szerokiej publiczności sens prowadzonych obecnie badań oraz dokonanych odkryć w zakresie nauk ścisłych. Absolwent posiada wiedzę i umiejętności umożliwiające podjęcie pracy w instytucjach zajmujących się popularyzacją osiągnięć nauki, a także w jednostkach badawczych, laboratoriach diagnostycznych, gospodarce. Absolwent spełnia wymagania stawiane przez Ministerstwo Edukacji Narodowej nauczycielom fizyki w szkołach ponadpodstawowych, a w przypadku zaliczenia dodatkowej praktyki w szkole, także uprawnienia do nauczania matematyki. Absolwent ma nawyk ustawicznego kształcenia i doskonalenia kwalifikacji zawodowych, jest także przygotowany do podjęcia studiów trzeciego stopnia (doktoranckich).

ECTS Coordinators:

Qualification awarded:

Second cycle degree - magister - in physics

Access to further studies:

doctoral school, non-degree postgraduate education

Learning outcomes

We have more than one version of this field. Click below and select the version you want to see:

University of Warsaw

Second cycle programme completion diploma

Field of study: Physics
Speciality: Biophysics

Duration of programme: 4 semesters
ECTS credits obtained: 120
including:
fundamental sciences courses 57
practical (labs and workshops) 56
modular courses 84
Professional practice: 2

On completion of the programme of study the graduate:

KNOWLEDGE

• Demonstrates broadened general knowledge of selected areas of physical, chemical and biological science, as well as their historical development, interconnections and their significance for the progress in science, the exploration of the Universe and human development; demonstrates an ability to autonomously reproduce basic theorems and laws and their proofs; understands complex physical, chemical and biological phenomena and processes as defined in the syllabus of the chosen speciality of study; recognizes the importance and advantages of interdisciplinary approach in science;

• Demonstrates deepened knowledge of advanced mathematics, mathematical methods as well as calculation, numerical and IT techniques to solve and model physics problems as defined in the syllabus of the chosen speciality and field of study;

• Demonstrates knowledge of advanced experimental, observational and numerical methods to design and implement complex physical, chemical and biological experiments;

• Demonstrates knowledge of current developments in physical, natural and medical science in the area of the chosen speciality of study; uses scientific terminology specific to the area of study;

• Demonstrates an understanding of basic concepts and principles of protection of industrial property rights and copyrights as well as the management of intellectual property capital; demonstrates an ability to make use of patent information resources.

SKILLS

• Integrates the scientific method into problem-solving, experimentation and drawing conclusions;

• Demonstrates an ability to critically analyse and evaluate the results of measurements, observations or theoretical calculations and computational modeling; interprets the results applying the knowledge of theory and theoretical models;

• Presents the results of research (experimental, theoretical or numerical) in writing (in Polish and in English), as a multimedia presentation (in Polish and in English) and a conference poster; demonstrates an ability to present the research results in the form of a master’s thesis and possesses basic skills to write a scientific article (in Polish and in English) under the guidance of a scientific counsellor.

SOCIAL COMPETENCIES

• Demonstrates communication and interpersonal skills as a member of diverse interdisciplinary teams; is aware of own limitations and knows when to seek experts’ advice;

• Accepts responsibilities for initiating scientific research, experiments or observations; understands social aspects of applying the acquired knowledge and skills and assumes the responsibility for the outcome.

PROFESSIONAL PRACTICE

The practice duration: two weeks after the completion of the 1st year of study (2 ECTS). The practice venues: PAN (Polish Academy of Sciences) institutes, Polish and foreign universities conducting broad range of research in biophysics, chemistry, biology, medical science. The students choose their practice venues and scientific counsellors from the list of well recognised research teams (the list varies each year). The students may also propose their own practice venue. In such a case, the venue has to approved by a speciality coordinator. The students join research teams and participate in their current research activities. This enables them to acquaint with a variety of experimental techniques used in biomedical science, learn methods of designing and implementing experiments. The students, as part of the research team, participate in seminars and workshops. Upon the completion of the practice programme the students submit a report, signed by an immediate practice supervisor, to the practice coordinator. The students write their master’s thesis at the Division of Biophysics (Institute of Experimental Physics, Faculty of Physics) or within a research group collaborating with the Division, based on the experience gained during the practice.

On completion of the practice programme the student:

• Integrates the scientific method into problem-solving, experimentation and drawing conclusions;

• Correctly identifies priorities to ensure the completion of assigned tasks and projects of diverse and interdisciplinary character;

• Demonstrates communication and interpersonal skills working in diverse interdisciplinary teams.

Course structure diagram:

Abbreviations used in tables:
lect - Lecture
cl - Class
lab - Lab
prac_mgr - Master Diploma Laboratory
praktyka - Placement
psem - Proseminar
sem - Seminar
c - Pass/fail
e - Examination
g - Grading
Second year in OpticsECTSlectcllabprac_mgrpraktykapsemsemexam
Practical training MSc Studies390c
Specialisation laboratory II including master thesis19240c
Optics - specialization laboratoryg
Optics Seminar230g
Total:242409030
Second year in Biomedical PhysicsECTSlectcllabprac_mgrpraktykapsemsemexam
Seminar on biomedical physics Zg
Total:
Second year in GeophysicsECTSlectcllabprac_mgrpraktykapsemsemexam
General university courses6
Total:6

Admission procedures:

Visit the following page for details on admission procedures: https://irk.oferta.uw.edu.pl/