Spektroskopia B 1200-1SPEKTBW4
Wykład ma za zadanie
a) przedstawić systematycznie wiedzę potrzebną do świadomego wykorzystania metod spektroskopowych w chemii,
b) zapoznać studenta z podstawami teoretycznymi najważniejszych metod spektroskopii molekularnej,
c) zapoznać studenta z metodyką rejestracji widm oraz interpretacją widm.
W części wstępnej przypomniane zostaną właściwości promieniowania elektromagnetycznego oraz podstawowe wiadomości z chemii kwantowej dotyczące kwantowania energii elektronowej, oscylacyjnej i rotacyjnej molekuły. Następnie wyjaśniona zostanie korelacja między strukturą poziomów energetycznych molekuły a postacią widma absorpcyjnego, emisyjnego oraz rozproszenia Ramana oraz związek między stanami kwantowymi molekuły a intensywnością widma. Rozkład Boltzmanna. Wprowadzone zostaną najważniejsze pojęcia teorii grup w zastosowaniu do symetrii molekuł. Podczas kolejnych wykładów będą omawiane poszczególne techniki spektroskopowe. Spektroskopia rotacyjna – poziomy energetyczne dwuatomowego rotatora sztywnego; rotacje wieloatomowych molekuł; widmo mikrofalowe i rotacyjny efekt Ramana. Spektroskopia oscylacyjna - oscylator harmoniczny i anharmoniczny; poziomy energetyczne i funkcje falowe dwuatomowego oscylatora harmonicznego, pojęcie drgania normalnego; widmo podczerwieni i oscylacyjny efekt Ramana; rezonansowy efekt Ramana, zastosowanie teorii grup w interpretacji widm oscylacyjnych, rezonans Fermiego, widma oscylacyjno-rotacyjne - reguły wyboru; transformacja Fouriera. Widma elektronowe, reguły wyboru w atomach i cząsteczkach, zastosowanie teorii grup w interpretacji widm elektronowych; struktura oscylacyjna i rotacyjna widm elektronowych; wyznaczanie energii dysocjacji z widm elektronowych; widma luminescencji. Dichroizm kołowy. Spektroskopia fotoelektronów - podstawy spektroskopii XPS, UPS i Augera. Elektronowy rezonans paramagnetyczny (EPR) - kwantowanie energii elektronu w zewnętrznym polu magnetycznym; współczynnik rozszczepienia spektroskopowego g; struktura nadsubtelna widm EPR. Jądrowy rezonans magnetyczny (NMR) - stany energetyczne magnetycznych jąder w zewnętrznym polu magnetycznym; warunek rezonansu; zjawisko ekranowania jąder; sprzężenia spinowo-spinowe; równocenność chemiczna i magnetyczna; rezonans 1H, 13C, 14N, 15N i 19F; procesy relaksacji w NMR; efekt Overhausera; wielowymiarowe widma NMR. Tomografia NMR.
Pokazane zostaną możliwości zastosowania metod spektroskopowych w rozwiązywaniu różnych problemów w chemii (identyfikacja związków organicznych, określanie budowy związków chemicznych, zastosowania analityczne).
Kierunek podstawowy MISMaP
Rodzaj przedmiotu
Tryb prowadzenia
Założenia (lista przedmiotów)
Założenia (opisowo)
Koordynatorzy przedmiotu
Efekty kształcenia
Po ukończeniu wykładu student powinien umieć:
a) dokonać wyboru technik spektroskopowych do rozwiązywania określonego problemu
b) wyjaśnić zasady pomiaru lub rejestracji widm w wybranych obszarach spektralnych
c) przeprowadzić interpretację widm pod kątem relacji z budową związków chemicznych
d) posługiwać się wynikami obliczeń w interpretacji widm
e) rozumieć i krytycznie odnosić się do ograniczeń poszczególnych technik spektroskopowych.
Kryteria oceniania
Egzamin końcowy przeprowadzany w formie egzaminu pisemnego z pytaniami otwartymi oraz egzaminu ustnego. Czas pisania 90 minut. Zaliczenie od 50%.
Praktyki zawodowe
N/A
Literatura
P. W. Atkins, Chemia Fizyczna, PWN, Warszawa, 2003.
Z. Kęcki, Podstawy spektroskopii molekularnej, PWN, Warszawa, 1992.
Skrypt dostępny u prowadzącego
Więcej informacji
Więcej informacji o poziomie przedmiotu, roku studiów (i/lub semestrze) w którym się odbywa, o rodzaju i liczbie godzin zajęć - szukaj w planach studiów odpowiednich programów. Ten przedmiot jest związany z programami:
Dodatkowe informacje (np. o kalendarzu rejestracji, prowadzących zajęcia, lokalizacji i terminach zajęć) mogą być dostępne w serwisie USOSweb: