Analiza funkcjonalna* 1000-135AF*
Program wykładu w zasadzie nie różni się od programu wykładu podstawowego, natomiast jego treści będą realizowane w sposób pogłębiony i często bardziej ogólny. Wykład jest przeznaczony dla studentów zainteresowanych głębszym poznaniem przedmiotu i lubiących myśleć o związanych z nim zadaniach i problemach.
1. Definicja przestrzeni Banacha, przestrzenie ciągowe, przestrzenie C(K), przestrzenie funkcji całkowalnych z p-tą potęgą - zupełność, przypomnienie nierówności Hoeldera i Minkowskiego. Pojęcie funkcjonału liniowego i jego normy. Przykłady. (2-3 wykłady)
2. Przestrzeń Hilberta, układy i bazy ortonormalne, twierdzenie o rzucie ortogonalnym. Przykłady baz ortonormalnych: układ trygonometryczny, układ Haara, falki. Postać funkcjonału liniowego na przestrzeni Hilberta. (2-3 wykłady)
3. Operatory liniowe, norma operatora. Przykłady ważnych operatorów: np. operator średniej warunkowej i twierdzenie Radona-Nikodyma, transformata Fouriera i twierdzenie Plancherela. (1-3 wykłady)
4. Operatory sprzężone na przestrzeni Hilberta. Operatory unitarne. Diagonalizacja operatora zwartego i samosprzężonego. (2-3 wykłady)
5. Twierdzenie Banacha-Steinhausa i jego zastosowania, twierdzenie Hahna-Banacha i twierdzenia o oddzielaniu. (2-3 wykłady)
6. Ponadto, mogą zostać omówione następujące tematy: Przestrzenie sprzężone do przestrzeni Banacha, w szczególności przestrzenie sprzężone do przestrzeni C(K) i przestrzeni funkcji całkowalnych z p-tą potęgą. Operatory sprzężone na przestrzeniach Banacha. Twierdzenie o wykresie domkniętym i odwzorowaniu otwartym.
Rodzaj przedmiotu
Koordynatorzy przedmiotu
W cyklu 2024L: | W cyklu 2023Z: |
Efekty kształcenia
Student
1. Zna definicję i własności przestrzeni Banacha oraz podstawowe przykłady przestrzeni Banacha (przestrzenie
ciągowe, L_p, C(K)).
2. Zna definicję i własności przestrzeni Hilberta, układu i bazy ortonormalnej, twierdzenie o rzucie ortogonalnym, podstawowe przykłady baz ortonormalnych ,postać
funkcjonału liniowego na przestrzeni Hilberta.
3. Zna definicje i własności operatorów liniowych, normy operatora, przykłady ważnych operatorów: np. operator średniej warunkowej i twierdzenie Radona-Nikodyma, transformatę Fouriera i twierdzenie Plancherela.
4. Zna definicje i własności operatorów sprzężonych na przestrzeni Hilberta, operatorów unitarnych, Twierdzenie o diagonalizacji operatora zwartego i samosprzężonego.
5. Zna twierdzenia Banacha-Steinhausa i jego zastosowania, twierdzenie Hahna-Banacha i twierdzenia o oddzielaniu.
6. Zna definicję i własności przestrzeni sprzężonej do przestrzeni Banacha (w szczególności przestrzeni sprzężonej do przestrzeni C(K) i L_p) pojęcie przestrzeni
refleksywnej, operatora sprzężonego na przestrzeniach.
Banacha, twierdzenie o wykresie domkniętym i odwzorowaniu otwartym.
8. Zna definicję i podstawowe własności operatorów zwartych. Umie sprawdzić czy pewne proste operatory liniowe są zwarte.
Kryteria oceniania
Ocena z przedmiotu będzie zależała od wyników pracy na ćwiczeniach, wyników kolokwiów w trakcie semestru, wyniku egzaminu pisemnego i ustnego. Szczegółowe zasady oceny są podane w informacjach dotyczących odpowiedniego cyklu dydaktycznego.
Więcej informacji
Więcej informacji o poziomie przedmiotu, roku studiów (i/lub semestrze) w którym się odbywa, o rodzaju i liczbie godzin zajęć - szukaj w planach studiów odpowiednich programów. Ten przedmiot jest związany z programami:
Dodatkowe informacje (np. o kalendarzu rejestracji, prowadzących zajęcia, lokalizacji i terminach zajęć) mogą być dostępne w serwisie USOSweb: