Analiza matematyczna I.1 (potok I) 1000-111bAM1a
1. Liczby rzeczywiste, kresy zbiorów, aksjomat ciągłości (pewnik Dedekinda). Liczby naturalne, całkowite, wymierne i niewymierne, zasada indukcji zupełnej i przykłady jej zastosowań.
2. Granica ciągu (w tym granice nieskończone), warunek Cauchy'ego, istnienie granic ciągów monotonicznych. Istnienie pierwiastków. Podstawowe granice (w tym liczba e). Twierdzenie Cesaro-Stolza. Podciągi, Twierdzenie Bolzano-Weierstrassa o ciągu ograniczonym.
3. Szeregi liczbowe o wyrazach rzeczywistych i zespolonych, pojęcie szeregu zbieżnego. Szereg geometryczny i rozwijanie liczb rzeczywistych przy różnych podstawach. Warunek Cauchy'ego dla szeregów. Szeregi o wyrazach dodatnich, kryterium porównawcze, kryterium Cauchy'ego o zagęszczaniu, kryterium ilorazowe d'Alemberta, kryterium pierwiastkowe Cauchy'ego. Szeregi o wyrazach dowolnych - zależność sumy szeregu od kolejności wyrazów. Szeregi naprzemienne - kryterium Leibniza. Szeregi bezwzględnie zbieżne. Kryteria Abela i Dirichleta. Twierdzenia o
zbieżności iloczynu Cauchy'ego dwóch szeregów. Niewymierność liczby e.
4. Granica funkcji w punkcie, ciągłość funkcji (warunki Heinego i Cauchy'ego), własność Darboux. Ciągłość funkcji odwrotnej. Twierdzenie Weierstrassa o przyjmowaniu kresów. Jednostajna ciągłość funkcji ciągłej na przedziale domkniętym. Funkcja wykładnicza i funkcja logarytmiczna, funkcje trygonometryczne i cyklometryczne.
5. Funkcje wypukłe, interpretacja geometryczna. Nierówność Jensena i wynikające z niej klasyczne nierówności (Cauchy'ego o średnich, Schwarza). Pochodna i jej interpretacje, styczna do wykresu funkcji. Charakteryzacja wypukłości funkcji w terminach ilorazów różnicowych i pierwszej pochodnej.
Kierunek podstawowy MISMaP
matematyka
Rodzaj przedmiotu
Koordynatorzy przedmiotu
W cyklu 2024Z: | W cyklu 2023Z: |
Efekty kształcenia
Student:
1. Podaje przykłady liczb niewymiernych i zna dowody ich niewymierności. Potrafi wyznaczać kresy podzbiorów ciała liczb rzeczywistych. Posługuje się metodą indukcji zupełnej.
2. Zna pojęcie granicy ciągu liczb rzeczywistych i zespolonych, zna jego arytmetyczne własności, a także twierdzenie Bolzano-Weierstrassa i warunek Cauchy'ego. Rozpoznaje i określa najważniejsze własności ciągów liczb rzeczywistych danych wzorem jawnym lub rekurencyjnym: monotoniczność, ograniczoność, zbieżność całego ciągu lub jego podciągów.
3. Potrafi wskazać metodę definiowania funkcji wykładniczej oraz funkcji trygonometrycznych na zbiorze liczb rzeczywistych; zna podstawowe własności tych funkcji.
4. Zna pojęcie sumy szeregu zbieżnego oraz najważniejsze własności szeregów zbieżnych bezwzględnie i warunkowo. Bada zbieżność szeregów, posługując się kilkoma kryteriami zbieżności; potrafi odróżnić zbieżność bezwzględną od warunkowej.
5. Zna pojęcie granicy funkcji zmiennej rzeczywistej i jego równoważne definicje. Potrafi analizować istnienie granicy funkcji elementarnej zmiennej rzeczywistej i obliczyć tę granicę.
6. Zna podstawowe własności funkcji ciągłych zmiennej rzeczywistej, w tym własność Darboux, twierdzenie Weierstrassa o osiąganiu kresów i twierdzenie o jednostajnej ciągłości na przedziałach domkniętych. Potrafi analizować
ciągłość i jednostajną ciągłość funkcji określonych na różnych przedziałach osi rzeczywistej. Wykorzystuje własności funkcji ciągłych w zadaniach o charakterze jakościowym, m.in. własność Darboux w dowodach istnienia rozwiązań konkretnych równań.
7. Zna pojęcie funkcji wypukłej, nierówność Jensena i najważniejsze przykłady jej zastosowań, w tym do dowodów nierówności.
8. Zna definicję pochodnej oraz geometryczne i fizyczne interpretacje tego pojęcia.
Kryteria oceniania
Zaliczenie na ocenę wystawianą na podstawie dwóch kolokwiów i punktacji z ćwiczeń.
Literatura
1. A. Birkholc, Analiza matematyczna dla nauczycieli. PWN, Warszawa 1977.
2. B. P. Demidowicz, Zbiór zadań z analizy matematycznej, Naukowa Książka, Lublin 1992 (t. I) i 1993 (t. II i III).
3. G. M. Fichtenholz, Rachunek różniczkowy i całkowy. Tom 1-2, PWN, Warszawa 2007.
4. W. Kaczor, M. Nowak, Zadania z Analizy Matematycznej 1. Liczby rzeczywiste, ciągi i szeregi liczbowe, PWN,
Warszawa 2005.
5. K. Kuratowski, Rachunek różniczkowy i całkowy, PWN, Warszawa 1979.
6. W. Pusz, A. Strasburger, Zbiór zadań z analizy matematycznej Wydział Fizyki UW, Warszawa 1982.
7. W. Rudin, Podstawy analizy matematycznej, PWN, Warszawa 2000.
8. P. Strzelecki, Analiza Matematyczna I (skrypt wykładu),
http://dydmat.mimuw.edu.pl/sites/default/files/wyklady/analiza-matematyczna-i.pdf
Dodatek do skryptu (aut. M. Jóźwikowski, S. Kolasiński),
http://dydmat.mimuw.edu.pl/sites/default/files/wyklady/analiza-matematyczna-i-zadania.pdf
Więcej informacji
Więcej informacji o poziomie przedmiotu, roku studiów (i/lub semestrze) w którym się odbywa, o rodzaju i liczbie godzin zajęć - szukaj w planach studiów odpowiednich programów. Ten przedmiot jest związany z programami:
Dodatkowe informacje (np. o kalendarzu rejestracji, prowadzących zajęcia, lokalizacji i terminach zajęć) mogą być dostępne w serwisie USOSweb: