Classical Mechanics 1100-2AF13
The aim of this course is to make students familiar with the Lagrange and Hamiltonian formalisms of classical mechanics. The contemporary problems of mechanics will be also discussed in this lecture. The discussion classes are focussed on the practical use of presented formalism in analysis of mechanic classical systems.
Program:
1. Description of movement in inertial and non-inertial frames
2. Reaction forces, Lagrange equations of the first order
3. Lagrange equations of the second order
4. Dynamics of rigid bodies
5. Hamilton approach to mechanics
6. Applications of Lagrange and Hamilton formalisms to various mechanical problems
7. Kinematics and dynamics of relativistic systems
8. Basics of dynamics of continuous media.
Requirement: exam
This instruction is not a strict translation of the Polish version.
Description by Jacek A. Majewski in June 2008, updated by Z. Ajduk in May 2010, K. Turzyński in May 2011 and J. Rosiek in May 2016.
Main fields of studies for MISMaP
astronomy
physics
Mode
Prerequisites (description)
Course coordinators
Term 2024Z: | Term 2023Z: |
Assessment criteria
The exercises are evaluated based on results of 3 problem tests (colloquium) and homework.
Written exam consists of 3 problems.
Proposed final grade depends on the sum of points (exercises and exam),
the sam the resit exam. Can be changed during an individual oral exam.
The resit exam follows the same rules.
Practical placement
none
Bibliography
1. John R. Taylor, Classical Mechanics, University Science Books (2005)
2. Oliver Davis Johns, Analytical Mechanics for Relativity and Quantum Mechanics, Oxford University Press, Oxford, 2005.
3. G. L. Kotkin, V.G. Serbo, Collection of problems in classical mechanics, Pergamon Press, Oxford, 1971.
Additional information
Information on level of this course, year of study and semester when the course unit is delivered, types and amount of class hours - can be found in course structure diagrams of apropriate study programmes. This course is related to the following study programmes:
Additional information (registration calendar, class conductors, localization and schedules of classes), might be available in the USOSweb system: