Formal Philosophy of Mathematics 3800-FPM25-S
During the seminar we shall discuss selected topics from contemporary formal philosophy of mathematics, that is the discipline that uses formal tools
to investigate philosophical problems related to mathematics. A significant part of our meetings will be devoted to lectures of invited speakers who are leading figures in the field.
We shall focus on issues revolving around the following themes:
- the structure of formal theories of numbers and sets;
- implicit commitments of axiomatic theories;
- the meaning of the reducibility relations between mathematical theories;
- the determinateness of Second Order Logic;
- the intended model of an axiomatic theory;
- internal categoricity.
Rodzaj przedmiotu
Założenia (opisowo)
Koordynatorzy przedmiotu
Efekty kształcenia
Acquired knowledge
- knows the contemporary foundational theories discussed in the philosophical literature
- has deepened knowledge of the contemporary philosophical arguments regarding the (in)determinateness of philosophical concepts
Acquired skills:
- analyzes complex logical and philosophical arguments
- recognizes the flaws and logical errors in oral and written argumentation
Acquired social competences:
- has the ability to work in a team.
- understands and appreciates the need for training and professional development
Kryteria oceniania
Activity, written essay
Acceptable number of missed classes without formal explanation: 2 in a semester
Literatura
Cieśliński, Cezary (2017) „The Epistemic Lightness of Truth. Deflationism and its Logic”, Cambridge University Press.
Halbach, Volker (2013) „Aksjomatyczne teorie prawdy”, PWN, Warszawa, przeł. Cezary Cieśliński i Joanna Golińska-Pilarek.
Väänänen, Jouko & Maddy, Penelope (2023) “Philosophical Uses of Categoricity Arguments”, Cambridge University Press
Halbach, Volker, & Horsten, Leon (2005) Computational structuralism. Philosophia Mathematica
Więcej informacji
Dodatkowe informacje (np. o kalendarzu rejestracji, prowadzących zajęcia, lokalizacji i terminach zajęć) mogą być dostępne w serwisie USOSweb: