Bajesowska ekonometria szeregów czasowych 2400-ZEWW828
Niewątpliwym atutem mojego kursu są autorskie materiały analityczno-szkoleniowe wykorzystywane podczas zajęć, których poziom uszczegółowienia często wykracza poza to co możecie spotkać w jakimkolwiek podręczniku. Ponadto wszystkie metody MCMC oraz modele omawiane podczas zajęć będą ilustrowane autorskimi kodami napisanymi w programie R.
Zajęcia składają się z 2-ch bloków:
1) Wprowadzenie do koncepcji bajesowskiej:
a) Formuła Bayesa, różnice między bajesowskim a częstościowym paradygmatem
b) Model regresji liniowej w ujęciu bajesowskim
c) AutoRegression (AR) w ujęciu bajesowskim
d) Metody Markov Chain Monte Carlo (MCMC) – próbnik Gibbsa, kilka wariantów algorytmu Metropolisa-Hastingsa oraz monitorowanie zbieżności
2) Omawiane modele (lista rzeczywiście rozważanych modeli podczas zajęć może się zmieniać):
a) Vector AutoRegression (VAR)
b) Structural VAR
c) State-space models
d) Modele ze zmiennymi w czasie współczynnikami (Time-Varying Parameters models – TVP)
e) UWAGA: istnieje opcja, żeby zaproponować estymację dowolnego modelu, który uczestnicy kursu uznają za użyteczny lub ciekawy np. Stochastic Volatility, Dynamic Factors Models, TVP-VAR, Local Projection itd.
Rodzaj przedmiotu
Koordynatorzy przedmiotu
Efekty kształcenia
Wiedza: Student będzie rozumiał język bajesowski, będzie w stanie napisać kod w wybranym przez siebie środowisku, pozna modele obecnie spotykane w najnowszej literaturze
Umiejętności: Jak wykorzystać potencjał metod bajesowskich w modelowaniu ekonomicznym; Zainteresowany i ambitny student ma szansę zdobyć umiejętność bajesowskiego myślenia, a nie jak implementować metody bajesowskie
Kryteria oceniania
Wykonanie pracy empirycznej w zespołach max. 2-osobowych, która w części obliczeniowej używa metod bajesowskich w dowolnym środowisku programistycznym np. R, Python, Matlab, Stata itd.
Warunkiem zaliczenia jest przesłanie raportu i maksymalnie 3 nieusprawiedliwione nieobecności.
Literatura
Przede wszystkim autorskie slajdy, jak również:
Geweke, J. (2006), Contemporary Bayesian Econometrics and Statistics, Wiley.
Hamilton, J. D. (1994), Time Series Analysis, Princeton University Press.
Koop, G. (2003), Bayesian Econometrics, Wiley
Lancaster, T. (2004), An Introduction to Modern Bayesian Econometrics, Wiley-Blackwell.
Zellner, A. (1971), An Introduction to Bayesian Inference in Econometrics, Wiley.
Więcej informacji
Dodatkowe informacje (np. o kalendarzu rejestracji, prowadzących zajęcia, lokalizacji i terminach zajęć) mogą być dostępne w serwisie USOSweb: