Explainable Artificial Intelligence 2400-SP-DS-XAI
Celem kursu jest zaprezentowanie narzędzi wytłumaczalnego uczenia maszynowego, które pozwalają zinterpretować modele mające charakter "czarnej skrzynki". W pierwszej kolejności omówiona zostanie interpretacja globalna modelu: ocena jakości modelu (analiza reszt), ocena ważności zmiennych (lokalne metody oceny ważności zmiennych, permutacyjne metody oceny ważności zmiennych), analizy scenariuszowe typu „co jeśli” (Partial Dependence Plot, Accumulated Local Effects). W drugiej częśći zajęć wykorzystane zostaną metody lokalnej interpretacji modelu: Local Surrogate (LIME), Shapley Values, SHAP (SHapley Additive exPlanations), BreakDown.
Rodzaj przedmiotu
Koordynatorzy przedmiotu
Tryb prowadzenia
Kryteria oceniania
Test zaliczeniowy - do zaliczenia wymagana jest 50% poprawnych odpowiedzi na 10 pytań.
Literatura
Materiały przygotowywane przez wykładowcę i udostępniane uczestnikowi na platformie Google Drive.
Więcej informacji
Dodatkowe informacje (np. o kalendarzu rejestracji, prowadzących zajęcia, lokalizacji i terminach zajęć) mogą być dostępne w serwisie USOSweb: