Nowe modele grawitacji kwantowej 1102-6NMGK
Intensywnie rozwijającymi się podejściami do grawitacji kwantowej mającymi za punkt wyjścia teorię grawitacji Einsteina są Pętlowa Grawitacja Kwantowa oraz Modele Pian Spinowych. Pierwsze z podejść jest kanoniczne (3+1), a drugie wykorzystuje schemat sumowania po klasycznych historiach układu (całkowania po trajektoriach). Elementy Pętlowej Grawitacji Kwantowej zostały wyłożone w 2007 roku w ramach przedmiotu ,,Kwantowe modele pola grawitacyjnego". Poniższa seria wykładów dotyczyć będzie podejścia poprzez Piany Spinowe. Materiał zostanie przedstawiony w sposób zrozumiały także dla tych słuchaczy, którzy nie brali udziału w wykładach ,,Kwantowe modele pola grawitacyjnego''. Jednak jednym z głównych tematów będzie zrozumienie dynamiki kwantowego pola grawitacyjnego definiowanej w Pętlowej Grawitacji Kwantowej przez Piany Spinowe. A więc obydwie teorie będą współistnieć na wykładzie.
Program:
1. Elementy Pętlowej Grawitacji Kwantowej w 2+1 i 3+1 wymiarach oraz przykłady jej zastosowań
2. Elementy dyskretnej geometrii Regge'go
3. Model Ponzano-Regge'go grawitacji kwantowej
4. Przejście pomiędzy Pętlową Grawitacją Kwantową w 2+1 wymiarach a modelem Ponzano-Regge'go
5. Model Barretta-Crana
6. Grupowa teoria pola (Group Field Theory)
7. Nowe modele Rovelliego i Freidala (R-F)
8. Propagator pola grawitacyjnego według modelu R-F
Zajęcia sugerowane do zaliczenia/wysłuchania przed wykładem:
teoria grup, general relativity, wstęp do kwantowej teorii pola
Forma zaliczenia: egzamin, ewentualnie samodzielne rozwiązanie problemu
Opis przygotował Jerzy Lewandowski, maj 2008
Literatura
1. A. Ashtekar, "Non-perturbative canonical gravity"
2. A. Ashtekar, J. Lewandowski, "Background Independent Quantum Gravity: A Status Report"
3. C.Rovelli, "Quantum Gravity" T. Thiemann, "Modern, canonical, general quantum gravity"
4. T. Regge, "General Relativity without coordinates", Nuovo Cim. 19 (1961) 558-571.
5. J. W. Barret, I. Naish-Guzman, "The Ponzano-Regge model", (2008)
http://arxiv.org/PS_cache/arxiv/pdf/0803/0803.3319v1.pdf
6. L. Freidel, E. R. Livine, "Ponzano-Regge model revisited III: Feynman diagrams and Effective field theory", Class.Quant.Grav. 23 (2006) 2021-2062
7. A.Perez, "Introduction to Loop Quantum Gravity and Spin Foams", (2004) http://arxiv.org/PS_cache/gr-qc/pdf/0409/0409061v3.pdf
8. L. Freidel, "Group Field Theory: An overview", (2005), http://arxiv.org/PS_cache/hep-th/pdf/0505/0505016v1.pdf
9. L. Freidel, K. Krasnov, "A new spin foam model for 4D gravity ",(2007), http://arxiv.org/PS_cache/arxiv/pdf/0708/0708.1595v1.pdf
10. J. Engle, R. Pereira, C. Rovelli, "Flipped spinfoam vertex and loop gravity", (2007), http://arxiv.org/PS_cache/arxiv/pdf/0708/0708.1236v1.pdf
Więcej informacji
Dodatkowe informacje (np. o kalendarzu rejestracji, prowadzących zajęcia, lokalizacji i terminach zajęć) mogą być dostępne w serwisie USOSweb: