General Relativity 1100-GR
1. Euclidean and Minkowski spaces:
affine spaces, affine spaces equipped with a scalar product.
2. Basics of differential geometry:
tensor calculus, differentiable manifolds, tensor fields, metrics, Lie derivative, covariant derivative, Riemann tensor, parallel transport, Killing vector fields.
3. Formulation of General Relativity:
basic concepts, postulates of GR, Einstein's equation.
4. Weak gravitational fields:
linearized Einstein's equation, Newtonian limit of GR, linear gravitational waves.
5. Schwarzschild spacetime:
static spherically symmetric spacetime, Schwarzschild metric, free test particles in the Schwarzschild spacetime, Kruskal-Szekeres extention, Schwarzschild black hole.
6. The simplest cosmological models
spatially homogeneous and isotropic spacetime, Robertson-Walker metrics, models with dust and radiation, Hubble law
Tryb prowadzenia
Założenia (opisowo)
Koordynatorzy przedmiotu
Kryteria oceniania
Rules of passing the course:
1. attendance at 38 hours of the lecture or the classes or both;
2. passing the examination, which will consist of a written and an oral part.
Literatura
1. Robert M. Wald "General Relativity";
2. Charles W. Misner, Kip S. Thorne, John A. Wheeler "Gravitation";
3. Bernard F. Schutz "A first course in general relativity".
Więcej informacji
Dodatkowe informacje (np. o kalendarzu rejestracji, prowadzących zajęcia, lokalizacji i terminach zajęć) mogą być dostępne w serwisie USOSweb: