Atoms, molecules and laser spectroscopy 1100-AMLS
Program
1. Hydrogen atom:
a. Schrödinger equation;
b. fine structure, Lamb shift.
2. Alkali atoms.
3. Helium atom.
4. Multielectron atoms:
a. independent electron approximation in a central potential;
b. atomic terms in L-S and j-j coupling;
c. electron configuration and determination of the term manifold;
d. the periodic table.
5. Hyperfine structure of atomic terms.
6. Separation of electron and nuclear motion in a molecule, adiabatic and Born-Oppenheimer approximations, potential energy surfaces.
7. Electronic structure of molecules:
a. diatomic molecules, molecular orbitals, orbital energies, electronic states and their energies;
b. polyatomic molecules: H2O, hydrocarbons, benzene. Hybrydization.
8. Nuclear motion in molecules - vibrations and rotation:
a. diatomic molecules - vibration of nuclei, rotation of molecules, structure of energy levels of diatomic molecules;
b. polyatomic molecules - rotational energy levels, classical treatment of vibrations, normal coordinates, quantum approach.
9. Molecular spectra:
a. rotational spectra;
b. vibrational spectra (change of vibrational level, rotational structure of vibrational transitions);
c. electronic transitions.
10. Introduction to spectroscopic methods and their relevance to modern physics.
11. Laser spectroscopy with resolution limited by Doppler width: absorption spectroscopy, cavity ring-down spectroscopy, excitation spectra, ionization, optogalvanic, optothermal spectroscopy, multiphoton spectroscopy, optical pumping, optical-optical double resonance, polarization labelling.
12. Doppler-free spectroscopy:
a. laser spectroscopy in atomic and molecular beams;
b. supersonic beams;
c. laser ablation;
d. fast ion beams;
e. saturation spectroscopy;
f. polarization spectroscopy;
g. two- and multiphoton Doppler-free spectroscopy.
13. Time-resolved spectroscopy:
a. pulsed excitation of atoms;
b. lifetime measurements in fast beams;
c. phase-shift method;
d. Hanle effect;
e. quantum beat spectroscopy;
f. picosecond spectroscopy - pulse and probe technique;
g. femtosecond spectroscopy;
h. laser femtochemistry.
14. Laser cooling and trapping of atoms:
a. laser cooling of atoms;
b. optical molasses;
c. Sisyphus cooling;
d. magnetooptic trap;
e. dipole and magnetic traps;
f. evaporative cooling;
g. atom optics;
h. optical tweezers;
i. Bose-Einstein condensation.
15. Laser cooling of molecules:
a. photoassociation spectroscopy;
b. magnetoassociation (Feshbach resonances).
16. Application of spectroscopic methods in chemistry, medicine and technology.
Kierunek podstawowy MISMaP
chemia
Tryb prowadzenia
Założenia (opisowo)
Koordynatorzy przedmiotu
Efekty kształcenia
The students will be able to explain and describe structure of atoms and molecules and their interaction with radiation in the language of quantum mechanics. The students will be familiar with modern spectroscopic techniques utilizing laser radiation and will be able to apply these techniques in their work. The students will know the basic principles of the scientific apparatuses used in spectroscopic measurements and will be able to choose a proper technique to measure the properties of atoms and molecules and interpret the results of the measurements.
Kryteria oceniania
Expected work load:
Class attendance: 30 h – 1,5 ECTS
Preparation for the final exam: 30h – 1,5 ECTS
Final mark based on an oral exam or a written test exam
Literatura
1. G.K. Woodgate, Elementary atomic structure.
2. P.W. Atkins, Molecular quantum mechanics.
3. H. Haken, H.Ch. Wolf, The Physics of Atoms and Quanta.
4. H. Haken, H.Ch. Wolf, Molecular Physics and Elements of Quantum Chemistry.
5. A.S. Dawydow, Quantum mechanics (and other textbooks on QM).
6. W. Demtröder, Laser spectroscopy.
7. A. Corney, Atomic and laser spectroscopy.
8. S. Svanberg, Atomic and Molecular Spectroscopy.
9. J.M. Hollas, Modern Spectroscopy.
Więcej informacji
Dodatkowe informacje (np. o kalendarzu rejestracji, prowadzących zajęcia, lokalizacji i terminach zajęć) mogą być dostępne w serwisie USOSweb: