Elektrodynamika i podstawy optyki 1100-2Ind15
Wykład kursowy łączący ostatnią część z cyklu podstaw fizyki (podstawy optyki) z elektrodynamiką klasyczną. Jego naczelnym celem jest zapoznane słuchaczy z podstawami optyki geometrycznej i falowej, elektromagnetyzmu w zakresie dotyczącym promieniowania elektromagnetycznego, oraz wprowadzenie do elektrodynamiki. Omówione będą związki elektrodynamiki makroskopowej z teorią mikroskopową, właściwości pól elektrycznych i magnetycznych w ośrodkach materialnych oraz ich rola w budowie materii. Wprowadzone też będą uniwersalne metody rachunkowe, które znajdują zastosowanie we wszystkich dziedzinach fizyki.
Program:
Przegląd równań Maxwella w próżni i w ośrodku materialnym, równanie Poissona i Laplace'a, zagadnienia brzegowe, zagadnienia Dirichleta i Neumanna, metoda funkcji Greena,.
Niestacjonarne pole elektromagnetyczne - fale elektromagnetyczne w próżni i ośrodkach materialnych: polaryzacja, fronty falowe, prędkość fazowa, prędkość grupowa, gęstość energii, przepływ energii i pęd fali EM, efekt Dopplera, prawo odbicia i załamania, zasada Fermata, wzory Fresnela, kąt Brewstera, całkowite wewnętrzne odbicie, dyfrakcja. Linie transmisyjne Wnęki rezonansowe i falowody.
Promieniowanie elektromagnetyczne. Potencjały i cechowanie – sformułowanie lokalne, postać kowariantna równań Maxwella, czteropotencjał, tensor pola elektrycznego, gęstość energii, tensor napięć Maxwella. Pole poruszającego się ładunku, potencjały Liénarda i Wiecherta., promieniowanie, anteny, pole promieniowania dipola elektrycznego i magnetycznego. Źródła fal EM, detektory fal EM.
Propagacja w dielektrykach, model Lorentza na współczynnik załamania, fale EM w przewodnikach, widmo fali, widzenie barwne, barwy czyste i mieszane.
Optyka geometryczna, propagacja w ośrodku z gradientem współczynnika załamania, owale Kartezjusza, sferyczna granica pomiędzy dielektrykami, przybliżenie przyosiowe, cienka soczewka, opis macierzami ABCD,
Dyfrakcja światła: konstrukcja Huyghensa, całka Fresnela-Kirchoffa, całka Sommerfelda, przybliżenie Fraunhofera, przybliżenie Fresnela.
Dwójłomność: fala zwyczajna i nadzwyczajna, polaryzatory krystaliczne, płytki falowe Polaryzacja - formalizm Jonesa, wektor Stokesa, sfera Poincare, polaryzacja częściowa.
Modulacja światła, efekty: elastooptyczny, elektrooptyczny, Kerra, Faradaya.
Rozpraszanie światła; Rayleigha, Mie, Ramana, luminescencja, fluorescencja, fosforescencja.
Kierunek podstawowy MISMaP
Tryb prowadzenia
Założenia (opisowo)
Koordynatorzy przedmiotu
Efekty kształcenia
Wiedza:
Znajomość zagadnień omawianych na wykładzie.
Umiejętności:
Umiejętność bezbłędnego i sprawnego rozwiązywania zadań, umiejętność wyjaśniania zjawisk omawianych na wykładzie w oparciu o posiadaną wiedzę oraz umiejętność planowania i przewidywania wyników podstawowych pomiarów z zakresu optyki i elektromagnetyzmu.
Postawy:
Potrafi formułować i komunikować opinie na temat podstawowych problemów z zakresu elektryczności i magnetyzmu. Rozumie potrzebę popularyzacji wiedzy.
Kryteria oceniania
Zaliczenie przedmiotu odbywa się na podstawie wyników kolokwiów, oceny zadań domowych, oraz wyników egzaminów pisemnego i ustnego.
Dopuszczenie do egzaminu ustnego wymaga zdobycia łącznie minimum 50% punktów za kolokwia, zadania domowe i egzamin pisemny.
Zadania domowe należy oddawać prowadzącemu ćwiczenia w ciągu 2 tygodni od opublikowania serii zadań. Z każdej serii będą wybierane i oceniane co najwyżej 3 zadania.
W przypadku niezaliczenia ćwiczeń możliwe jest zaliczenie ćwiczeń podczas egzaminu pisemnego.
Literatura
Podręczniki:
J.D. Jackson, Elektrodynamika Klasyczna
D.J. Griffiths, Podstawy Elektrodynamiki
J. Schwinger, Classical Elektrodynamics
J.R. Meyers-Arendt, Wstęp do optyki
J. Petykiewicz, Optyka falowa
Batygin, Toptygin, Zbiór zadań z elektrodynamiki
Więcej informacji
Dodatkowe informacje (np. o kalendarzu rejestracji, prowadzących zajęcia, lokalizacji i terminach zajęć) mogą być dostępne w serwisie USOSweb: