L^2-niezmienniki w topologii 1000-1M23LNT
Liczby L^2 Bettiego wprowadził M. F. Atiyah. Dla danej przestrzeni topologicznej określają one wymiar jądra operatora Laplace’a-Beltramiego, lub równoważnie, wymiar pewnej grupy kohomologii tej przestrzeni o współczynnikach w przestrzeni Hilberta. Wymiar ten liczony jest przy pomocy śladu na odpowiedniej algebrze von Neumanna. Liczby L^2 Bettiego zachowują się podobnie do klasycznych liczb Bettiego, np. są niezmiennikami topologicznymi, jednak niosą innego rodzaju informacje.
Celem kursu będzie wprowadzenie do teorii L^2 niezmienników. Omówiony zostanie klasyczny rozkład Hodge’a-de Rhama w L^2-kohomologiach, algebra von Neumana grupy oraz ślad na niej i wymiar von Neumanna. Następnie wprowadzone zostaną liczby L^2 Bettiego CW-kompleksów, ich podstawowe własności oraz liczby L^2-Bettiego grup dyskretnych. Udowodnione zostanie twierdzenie Cheegera-Gromova o znikaniu liczb L^2-Bettiego dla grup ze średnią.
Przedstawione zostaną klasyczne zastosowania L^2 niezmienników (do mapping torusów, defektu grup, własności co-Hopfa itp.)
Głównym celem wykładu jest udowodnienie twierdzenia Lücka o aproksymacji, mówiącego o tym, że liczby L^2-Bettiego są granicami klasycznych liczb L^2-Bettiego dla pewnych rodzin podgrup skończonego indeksu.
Na koniec przedstawiona zostanie hipoteza Atiyi, pewne przykłady o niewymiernych liczbach L^2-Bettiego oraz L^2-torsja.
Rodzaj przedmiotu
Koordynatorzy przedmiotu
Literatura
1) H. Kammeyer, Introduction to l^2 invariants, Springer LNM 2247, 2019.
2) W. Lück, L^2-Invariants: Theory and Applications to Geometry and K-Theory (A Series of Modern Surveys in Mathematics, 44), 2002.
Więcej informacji
Więcej informacji o poziomie przedmiotu, roku studiów (i/lub semestrze) w którym się odbywa, o rodzaju i liczbie godzin zajęć - szukaj w planach studiów odpowiednich programów. Ten przedmiot jest związany z programami:
Dodatkowe informacje (np. o kalendarzu rejestracji, prowadzących zajęcia, lokalizacji i terminach zajęć) mogą być dostępne w serwisie USOSweb: