Algebra dla MSEM II 1000-112ADM2
Algebra dla MSEM II
Algebra liniowa c.d. :
1. Endomorfizmy przestrzeni liniowych. Macierz endomorfizmu w bazie, zależność od bazy, macierze podobne (B = C^(-1)AC). Wektory, podprzestrzenie i wartości własne. Wielomian charakterystyczny. Endomorfizmy i macierze diagonalizowalne, kryteria diagonalizowalności. Twierdzenie Jordana o postaci kanonicznej macierzy endomorfizmu.
2. Podprzestrzenie afiniczne przestrzeni liniowej. Kombinacje afiniczne, bazy punktowe. Współrzędne w bazie punktowej. Układy bazowe (punkt i baza przestrzeni stycznej), parametryzacje. Przekształcenia afiniczne, odpowiadające im przekształcenia liniowe. Izomorfizmy afiniczne.
3. Formy dwuliniowe, formy symetryczne. Macierz formy dwuliniowej w bazie.
4. Iloczyny skalarne. Nierówność Schwarza. Przestrzenie euklidesowe liniowe. Dopełnienie prostopadłe podprzestrzeni. Rzuty i symetrie prostopadłe. Bazy prostopadłe (ortogonalne) i ortonormalne, współrzędne wektora w takich bazach. Ortogonalizacja Grama-Schmidta. Kryterium Sylvestera dodatniej określoności. Macierz Grama i jej własności (4 wykłady). Przekształcenia przestrzeni euklidesowych zachowujące iloczyn skalarny, izomorfizmy przestrzeni euklidesowych. Macierze ortogonalne. Izometrie. Przekształcenia samosprzężone. Diagonalizacja symetrycznych macierzy rzeczywistych za pomocą macierzy ortogonalnych.
5. Przestrzenie euklidesowe afiniczne. Odległość punktów w przestrzeniach euklidesowych, odległość punktu od podprzestrzeni. Miary w przestrzeniach euklidesowych, objętości równoległościanów i sympleksów. Kąty. Orientacja. Iloczyn wektorowy.
6. Funkcjonały (formy) liniowe, przestrzenie sprzężone (dualne). Bazy sprzężone, współrzędne funkcjonału w bazie sprzężonej, izomorfizm skończenie wymiarowej przestrzeni w przestrzeń sprzężoną.
7. Formy kwadratowe i metody ich diagonalizacji. Twierdzenie Sylvestera o bezwładności.
8. Elementy teorii zbiorów wypukłych i programowania liniowego.
Teoria grup i pierścieni:
1. Grupa, grupa abelowa, podgrupa. Grupy permutacji, grupy liniowe, grupy przekształceń. Grupa multiplikatywna i grupa addytywna ciała. Grupa cykliczna, rząd elementu. Rzędy elementów grupy permutacji, rozkład permutacji na cykle.
2. Warstwy grupy względem podgrupy, indeks podgrupy, twierdzenie Lagrange'a i zastosowania: każda grupa rzędu pierwszego jest cykliczna, małe tw. Fermata. Homomorfizm grup, jądro homomorfizmu, dzielnik normalny, grupa ilorazowa. Twierdzenie o homomorfizmie.
3. Działanie grupy na zbiorze, działanie grupy na sobie (z lewej, z prawej), twierdzenie Cayleya. Orbita działania, stabilizator elementu, punkty stałe działania, działanie wolne, działanie efektywne. Moc orbity = indeks stabilizatora. Przykłady: działania grupy permutacji i grup liniowych. Zastosowanie: twierdzenie Cauchy o istnieniu elementów rzędu pierwszego w grupie skończonej.
4. Pierścienie przemienne z 1, homomorfizmy. Ideał, pierścień ilorazowy, twierdzenie o homomorfizmie. Pierścień K[X] i ideały w nim. Ciało liczb zespolonych jako
R[X]/(X^2+1).
Rodzaj przedmiotu
Założenia (opisowo)
Koordynatorzy przedmiotu
Efekty kształcenia
Student potrafi stosować klasyczną teorię wyznaczników do rozwiązywania
zagadnień własnych w przestrzeniach skończenie wymiarowych. Znajduje też
bazy ortogonalne w przestrzeniach dwuliniowych (w szczególności
euklidesowych). W razie potrzeby umie zastosować podstawowe pojęcia teorii
grup i pierścieni w innych działach matematyki.
Kryteria oceniania
Na podstawie punktów uzyskiwanych w czasie semestru oraz egzaminu.
Więcej informacji
Dodatkowe informacje (np. o kalendarzu rejestracji, prowadzących zajęcia, lokalizacji i terminach zajęć) mogą być dostępne w serwisie USOSweb: