Chemical Instrumental Analysis, full-time 3,5 year programme leading to Bachelor's Degree (inżynier) (S1-PRK-CHAI)(in Polish: Chemiczna analiza instrumentalna, stacjonarne, pierwszego stopnia) | |
first cycle programme full-time, 3,5-year studies Language: Polish | Jump to: Opis ogólnyStudia prowadzone są w języku polskim. Dziedzina: nauki ścisłe i przyrodnicze, dyscyplina: nauki chemiczne Liczba semestrów: 7 Liczba punktów ECTS konieczna do ukończenia studiów na danym poziomie: 210 Tytuł zawodowy nadawany absolwentom: inżynier Zajęcia odbywają się na Kampusie Ochota, na Wydziale Chemii UW, przy ulicy Pasteura 1. Szczegółowy program studiów: tutaj Program studiów realizowany na kierunku Chemiczna Analiza Instrumentalna (studia pierwszego stopnia) obejmuje oprócz podstaw z zakresu chemii również podstawowe zagadnienia z zakresu matematyki oraz fizyki. Szczególny nacisk w trakcie kształcenia położony jest na dynamicznie rozwijające się metody instrumentalne i techniki pomiarowe, szeroko wykorzystywane w laboratoriach, w celu fizykochemicznej analizy zarówno nowo otrzymanych substancji takich jak: nowe leki, katalizatory, źródła energii, bioczujniki, jak i nowe materiały grafenowe czy nanocząstki metali i półprzewodników. Wiele z przedmiotów podstawowych pozwoli na dobre przygotowanie absolwentów kierunku do włączenia się w przyszłości w badania naukowe. Efekty kształcenia, przyjęte dla ww. kierunku, zakładają m.in., że absolwent będzie potrafił przeprowadzić szeroko pojęte analizy fizyko-chemiczne posługując się wybranymi technikami i metodami analizy instrumentalnej. Program studiów zapewnia studentom przygotowanie do zaplanowania i wykonania prostych badań doświadczalnych. Studenci zapoznają się także z takimi zagadnieniami, jak: organizacja kosztów i wydatków, sposoby oszacowania kosztów analiz chemicznych oraz zarządzanie personelem. Absolwent studiów I stopnia kierunku Chemiczna Analiza instrumentalna:
Absolwent ma możliwość podjęcia dalszego kształcenia na studiach II stopnia w kraju lub za granicą. Absolwent zainteresowany pracą zawodową może starać się o zatrudnienie w takich sektorach gospodarki jak analityka żywności, kryminalistyka, badania kliniczne, farmaceutyka, analiza nowych materiałów i pokrewne. |
ECTS Coordinators:
Qualification awarded:
Access to further studies:
Learning outcomes
The graduate has achieved the learning outcomes defined for the Chemical Instrumental Analysis bachelor’s degree program.
The graduate is able to design simple chemical processes typical for the course, using appropriately selected techniques and measurement methods as well as statistical tools and reagents.
They have the knowledge and skills to analyse existing technical solutions and evaluate these solutions using professional literature, databases and other sources of information, and can assess the reliability of the information obtained.
Knowledge, the graduate knows and understands:
- the role and place of chemistry in sciences and its contribution to the development of our civilization. He knows the basic concepts and laws of chemistry, knows the symbolism, nomenclature and chemical notation, knows and understands the notation of chemical reactions;
- basics of classical mechanics of material points and a rigid body, basics of fluid mechanics, laws of classical electrodynamics (including electric and magnetic fields, charged particles and electromagnetic waves), and the basics of geometric and wave optics;
- basic mathematical concepts and understands the role of mathematics as the foundation of science. Knows and understands: basics and methods of linear algebra, basics and methods of differential and integral calculus, as well as basics and applications of probability and mathematical statistics;
- theoretical basis of various molecular spectroscopy. Knows the application of various molecular spectroscopy;
- basics of analytical chemistry in the field of qualitative and quantitative analysis methods. He knows the methods and techniques of instrumental analysis. Understand signal dependence on content. Knows and understands issues related to systematic and random errors. Knows the methods of statistical interpretation of the obtained results;
- knows the basic aspects of the construction and operation of modern measuring equipment supporting scientific research in chemistry;
- basic principles of occupational health and safety to a degree sufficient to work in a chemical laboratory;
- ethical principles and norms related to engineering, research and teaching activities;
Skills, the graduate can:
- apply the known laws of chemistry in the analysis of selected chemical problems;
- use the methods of molecular spectroscopy and X-ray to analyse the structure and properties of molecules in the gas, liquid and crystalline phase;
- analyse the potential impact of selected technological processes on the natural environment;
- skillfully plan and perform basic research and experiments in the field of chemistry, and can observe and critically evaluate own results and discuss measurement errors;
- make a preliminary economic analysis of the undertaken engineering activities;
- skillfully plan and organize own and teamwork as part of the implementation of joint tasks and projects, and can critically assess its advancement;
- use numerical methods and mathematical statistics methods to verify experimental data in chemical experiments (using known software packages);
- perform a qualitative and quantitative analysis of inorganic substances, as well as use selected techniques of instrumental analysis to carry out the analysis of inorganic substances;
- carry out measurements of selected physicochemical quantities, determine their values and assess the reliability of the obtained results. He can use the selected measuring equipment.
Social competences, the graduate is ready to:
- determine the scope of their knowledge, skills and to improve their professional and personal competencies;
- independent undertaking and initiating simple research activities and in the event of difficulties with an independent solution of the problem of consulting experts;
- thinking and acting in an entrepreneurial way;
- fulfilling social obligations and acting in favour of the public interest due to the acquired knowledge and skills;
- responsible performance of professional roles, including observing the rules of professional ethics and demanding it from others, as well as caring for the achievements and traditions of the profession;
- responsible decision-making, taking into account non-technical aspects and effects of engineering activities, including its impact on the environment.