Analytical methods in mathematical modeling 4010-MAMa
1. Algorithms – general concepts (2 lectures, 2 exercises):
a. Problem - Model - Algorithm - Implementation
b. Algorithm properties: correctness, complexity, error tolerance, numerical stability
c. Algorithm types: iterative, adaptive, greedy
2. Linear algebra (8 lectures, 8 exercises):
a. Systems of linear equations, Gaussian elimination
b. Matrices, vectors, matrix operations
c. Orthogonality, Euclidean norm, orthogonal projection
d. Matrix factorization, SVD decomposition, matrix conditioning
3. Calculus (6 lectures, 6 exercises):
a. Differential and integral calculus
b. Newton's algorithm
c. Monte-Carlo algorithm
d. Steepest descent algorithm
4. Differential Equations (8 lectures, 8 exercises):
a. Ordinary and partial equations, systems of equations, initial and boundary conditions, etc.
b. Discretization, meshes
c. Galerkin methods
d. Examples of models and their analysis
5. Statistics (6 lectures, 6 exercises):
a. Wstęp probabilistyczny
b. Introduction to Probabilistics
c. Descriptive analysis of data sets (populations) – parameters
d. Estimation of population arameters
e. Verification of statistical hypotheses
The order of issues addressed and the level of detail in their implementation may change slightly.
Prerequisites (description)
Course coordinators
Type of course
Mode
Learning outcomes
...
Assessment criteria
...
Practical placement
Not applicable.
Bibliography
1. Paweł Bechler, Geometria z algebrą liniową (skrypt) https://www.mimuw.edu.pl/~pbechler/inf_gal/inf_gal_skrypt_2023.1.pdf
2. Włodzimierz Krysicki, Lech Włodarski, Analiza matematyczna w zadaniach część 1, PWN, Warszawa 1977.
3. Andrzej Palczewski, Równania różniczkowe zwyczajne, PWN, Warszawa, 2017
4. Urszula Foryś, Jan Poleszczuk, Modelowanie matematyczne w biologii i medycynie (skrypt) https://mst.mimuw.edu.pl/wyklady/mbm/wyklad.pdf
5. Urszula Foryś, Matematyka w biologii, WNT, Warszawa, 2005
6. Piotr Krzyżanowski, Obliczenia naukowe (skrypt) http://mst.mimuw.edu.pl/wyklady/ona/wyklad.pdf
7. Adam Łomnicki, Wprowadzenie do statystyki dla przyrodników, PWN, Warszawa, 2007
8. J. Jakubowski, R. Sztencel, Wstęp do teorii prawdopodobieństwa, SCRIPT, Warszawa, 2001.
Additional information
Additional information (registration calendar, class conductors, localization and schedules of classes), might be available in the USOSweb system: