Fundamentals of Molecular Spectroscopy B Tutorials 1200-1ZMPSMBC4
The tutorial is geared towards educating the students in qualitative and quantitative interpretation of the spectra in terms of molecular symmetry and structure and analytical applications of molecular spectroscopy.
We will recollect (after having introduced them in the lecture) the quantitative description of the electromagnetic radiation, the relation of peak position and the energy levels of the molecule, the Boltzmann distribution, the relation of the peak intensity and the transition moment and population of the energy levels, and the Doppler effect. The relevant computational problems will be solved. During the following classes the student will be solving problems related to: a) rotational spectroscopy: interpretation of the microwave spectrum and rotational Raman spectrum of two-atomic and simple polyatomic molecules in term of molecular geometric parameters, modelling of spectral intensities in rotational spectrum; b) vibrational spectroscopy: energy levels of harmonic and anharmonic application of group theory in interpretation of vibrational spectra, prediction of the activity of a vibration in IR and Raman spectrum on the basis of group theory, quantitative interpretation of the rotational-vibrational spectra of two-atomic molecules; c) electronic spectra: selection rules in atoms and molecules, application of group theory in interpretation of electronic spectra, vibrational and rotational structure of electronic spectra, determination of dissociation energy from electronic spectra, luminescence spectra. d) electron spin resonance (ESR): resonance condition, prediction of the ESR spectra, determination of the g factor and hyperfine coupling constants from the ESR spectra; e) Nuclear magnetic resonance (NMR): energy levels of magnetic nuclei in external magnetic field, resonance condition, prediction of the form of NMR spectra, calculation of chemical shift and spin-spin coupling from the NMR spectra.
Type of course
Mode
Prerequisites (description)
Course coordinators
Learning outcomes
After completing the tutorial, a student should be able:
a) to interpret a spectrum in terms of molecular properties
b) to predict the form of a spectrum on the basis of the theory of the given spectroscopic phenomenon
c) to use the spectra for quantitative and qualitative analysis
Assessment criteria
Written test, positive mark from 50%. Attendance is obligatory, maxixum two absences are allowed.
Practical placement
Does not apply.
Bibliography
Textbooks:
P. W. Atkins, Chemia Fizyczna, PWN, Warszawa, 2003.
P. W. Atkins, C.A. Trapp, M. P. Cady, C. Giunta Chemia Fizyczna. Zbiór zadań z rozwiązaniami, PWN, Warszawa, 2001.
Z. Kęcki, Podstawy spektroskopii molekularnej, PWN, Warszawa, 1992.
Additional information
Additional information (registration calendar, class conductors, localization and schedules of classes), might be available in the USOSweb system: