Quantum Optics 1100-QO
I. Quantum description of light
1. Quantization of electro-magnetic field
2. Classical and non-classical states
3. Phase space description
4. Spatio-temporal correlations
II. Light-matter interactions
5. Photodetection theory
6. Interaction of light with a two-level atom
7. Spontaneous emission
8. Driven-dissipative systems
9. Cavity QED
III. Applications: lasers, quantum metrology, photonic quantum technologies
Main fields of studies for MISMaP
Mode
Prerequisites (description)
Course coordinators
Learning outcomes
Knowledge:
- quantum description of light
- nonclassical properties of light and their consequences
- quantum description o llight-matter interactions
- familiarity with selected practical applications of quantum optics
Skills:
- computing the evolution and the effects of detection of quantum states of light
- computing the evolution of quantum systems taking into account quantum effects of light-matter interactions.
- identifcation of key quantum properties of light and matter that lay behind practical applications of quantum optics
Assessment criteria
- homework problems
- exam
Bibliography
Walls D.F., Milburn G.J. „Quantum optics”
Wolfgang P. Schleich „Quantum optics in phase space”
H. J. Carmichael „Statistical Methods in Quantum Optics”
S. Haroche, J. M. Raimond „Exploring the Quantum”
M. O. Scully and M. S. Zubairy, "Quantum Optics"
C. Gerry and P. L. Knight, "Introductory Quantum Optics" (tłum. polskie "Wstęp do optyki kwantowej")
Additional information
Additional information (registration calendar, class conductors, localization and schedules of classes), might be available in the USOSweb system: