(in Polish) Practical Quantum Mechanics (QM) using Mathematica 1100-4PQMM
Topics:
1) wave function, average values etc. Simulation of experience with 2 slots.
2) position and momentum operators demonstrated on selected wave functions. Commutation relations. The uncertainty principle (examples)
3) how to build other operators (momentum, energy) - we operate on selected wave functions
4) Schoedinger equation. Numerical simulation of wave packet motion.
5) Stationary solutions of the Schroedinger equation. Searching for solutions using the "shooting method" - what is the quantization of energy?
6) Harmonic oscillator. Creation and annihilation operators.
7) Quantum mechanics in finite dimension (in N representation, infinite matrices are approximated with finite ones)
8) IV postulate of quantum mechanics (operators eigenvalues of the operators are measured)
9) Angular momentum. Spherical harmonics. We check the properties (m, l)
10) Hydrogen atom. We draw orbitals
11) Spin. Pauli matrices.
12) Symmetrical and anti-symmetrical wave functions (fermions and bosons). Pauli's exclusion principle.
13) Entangled states. quantum teleportation. Q-bits. Quantum cryptography.
14) Periodic table of the elements
Assessment criteria
The course ends with an exam. The exam may take a form of an individual project.
Bibliography
The course does not correspond to any available textbook. Materials will be provided by the teacher.
Additional information
Additional information (registration calendar, class conductors, localization and schedules of classes), might be available in the USOSweb system: