Differential Geometry I 1100-2Ind05
- Manifolds and differential forms
- Lie derivative. Geometric interpretation.
- Vector bundles, examples.
- Frobenius theorem.
- Parallel transport, connection, covariant derivative.)
- Riemannian connection, Levi-Civita connection, torsion, curvature.
Forma zaliczenia: egzamin pisemny i ustny
Description by Jacek Jezierski, May 2008
Type of course
Mode
Requirements
Prerequisites (description)
Bibliography
1. K. Maurin, Analiza t. 2.
2. P. Urbanski, Analiza III, skrypt UW.
3. J. Gancarzewicz, Geometria różniczkowa, PWN, Warszawa, 1987.
4. M. Skwarczynski, Geometria rozmaitości Riemanna, PWN, Warszawa, 1993.
5. J. Jost, Riemannian Geometry and Geometric Analysis, Universitext, Springer, New York, 1995.
6. J. Oprea, Geometria różniczkowa i jej zastosowania, PWN, Warszawa, 2002.
Additional information
Additional information (registration calendar, class conductors, localization and schedules of classes), might be available in the USOSweb system: