Mathematical logic 1000-212aLOG
1. Relational structures. Substructures, homomorphisms, congruences.
2. Term algebras and unification.
3. Equational definability of classes of algebras. Free algebras.
4. Syntax and semantics of propositional and first-order logic.
5. Satisfiability and validity of formulas.
6. Formal proofs and the completeness theorem.
7. Compactness theorem and applications.
8. Formal arithmetic. Godel's incompleteness theorem.
9. Basic principles of intuitionistic logic.
10. Resolution and principles of logic programming.
Prerequisites: Wstęp do teorii mnogości.
Type of course
Bibliography
1. Z. Adamowicz, P. Zbierski "Logika matematyczna", PWN, 1991.
2. H. Rasiowa "Wstęp do matematyki wspólczesnej", PWN, 1971.
3. W. Marek, J. Onyszkiewicz,
4. "Elementy logiki i teorii mnogości w zadaniach'', PWN, 1996.
Additional information
Additional information (registration calendar, class conductors, localization and schedules of classes), might be available in the USOSweb system: