Analiza matematyczna inf. II 1000-212bAM2
1. Rachunek różniczkowy funkcji jednej zmiennej: pochodna i jej sens geometryczny, własności algebraiczne pochodnej, różniczkowanie elementarnych funkcji, ekstrema lokalne, twierdzenia Rolle'a, Lagrange'a i Cauchy'ego o wartości średniej, monotoniczność a pochodna, reguła de l' Hospitala, wyższe pochodne, wypukłość, wzór Taylora.**
2. Zbieżności (punktowa, jednostajna, niemal jednostajna) ciągów i szeregów funkcyjnych: norma „sup” funkcji, warunki konieczne i dostateczne (kryt. Weierstrassa) zbieżności jednostajnej szeregów funkcyjnych, twierdzenia o ciągłości i o różniczkowalności granicy, informacja o aproksymacji jednostajnej wielomianami.
3. Rachunek całkowy funkcji jednej zmiennej: całka nieoznaczona i oznaczona, całkowanie przez części i przez podstawianie, całkowanie funkcji wymiernych,
informacje o typowych podstawieniach, całka Riemanna, całkowalność i zbieżność sum Riemanna dla funkcji ciągłych, elementarne własności całki Riemanna, podstawowe twierdzenie rachunku całkowego, twierdzenie (tzw. „I-sze”) o wartości średniej, całki niewłaściwe (szkic).
4. Przestrzenie metryczne i ciągłość funkcji wielu zmiennych: przykłady metryk, normy, zbiory otwarte i domknięte, zbieżność ciągów w przestrzeniach metrycznych, zwartość w Rn i twierdzenie Bolzano Weierstrassa, granica i ciągłość funkcji wielu zmiennych, ciągłość funkcji a otwartość/domkniętość zbiorów, twierdzenie Weierstrassa o osiąganiu kresów dla funkcji wielu zmiennych.
5. Rachunek różniczkowy funkcji wielu zmiennych: pochodna funkcji wektorowej 1-nej zmiennej, pochodne cząstkowe, funkcje klasy C1, tw. o ekstremach lokalnych dla funkcji skalarnych, pochodna kierunkowa, różniczka, macierz Jakobiego, ciągłość funkcji różniczkowalnych i różniczkowalność funkcji klasy C1, różniczka złożenia i reguła „łańcuchowa”, ekstrema warunkowe i tw. o mnożnikach Lagrange'a, pochodne cząstkowe drugiego rzędu i warunki dostateczne na ekstrema lokalne.
6. Rachunek całkowy wielu zmiennych.***
Rodzaj przedmiotu
Wymagania (lista przedmiotów)
Efekty kształcenia
Wiedza i umiejętności:
A. znajomość ze zrozumieniem:
- pojęć (definicje i przykłady ilustrujące),
- sformułowanych twierdzeń (twierdzenia, stwierdzenia, fakty, lematy, wnioski itp oraz przykłady ilustrujące),
- ważnych dowodów,
B. umiejętność praktycznego posługiwania się twierdzeniami przy badaniu konkretnych problemów matematycznych, w odniesieniu grup tematycznych
1-5 i szczegółowych zagadnień w nich zawartych, wg. programu powyżej
Kompetencje społeczne:
1. Zrozumienie możliwości użycia elementarnych działów analizy matematycznej jako narzędzi pomocnych przy rozwiązywaniu zagadnień z innych dziedzin nauki oraz praktycznych zagadnień z życia codziennego (m. in. zagadnienia typu czysto obliczeniowego, zagadnienia maksymalizacji i minimalizacji, znajdowanie przybliżeń z szacowaniem błędów).
2. Umiejętność ścisłego, precyzyjnego i zgodnego z regułami logiki formułowania stwierdzeń, zrozumienie roli dowodu. Rozróżnienie modelu matematycznego od zagadnienia praktycznego, do którego model matematyczny próbujemy stosować.
3. Zdolność dostrzegania w konkretny ch przykładach pewnych abstrakcyjnych obiektów matematycznych
Kryteria oceniania
Część grup ćwiczeniowych jest prowadzona w szczególnej formule, z zajęciami laboratoryjnymi i wykorzystaniem systemu obliczeń symbolicznych Mathematica; do grup tych jest prowadzona osobna rejestracja.
Literatura
1. Kazimierz Kuratowski, Rachunek różniczkowy i całkowy. Funkcje jednej zmiennej, PWN.
2. Marcin Moszyński, Skrypt-Analiza Matematyczna dla informatyków, Wydz. Mat. Inf. i M. UW.
3. Witold Kołodziej, Analiza matematyczna, PWN, 1978 (wybrane rozdziały).
Więcej informacji
Więcej informacji o poziomie przedmiotu, roku studiów (i/lub semestrze) w którym się odbywa, o rodzaju i liczbie godzin zajęć - szukaj w planach studiów odpowiednich programów. Ten przedmiot jest związany z programami:
Dodatkowe informacje (np. o kalendarzu rejestracji, prowadzących zajęcia, lokalizacji i terminach zajęć) mogą być dostępne w serwisie USOSweb: